已知偶函数f(x)=loga∣ax+b∣在(0,+∞)上单调递增,则f(b-2)与f(a+1)的大小关系
1个回答
展开全部
f(x)=loga∣ax+b∣是偶函数,则有:
f(-x)= f(x) loga∣-ax+b∣=loga∣ax+b∣
∣-ax+b∣=∣ax+b∣ 所以b=0
此时f(x)=loga∣ax|
a是底数大于0, ∣ax|在(0,+∞)上时增函数,
根据复合函数“同增异减”的原则,底数a必须大于1.
因为f(b-2)=f(-2)=f(2) 且a+1>2
又f(x) 在(0,+∞)上单调递增,所以f(a+1)> f(2)
即f(a+1) > f(b-2)
f(-x)= f(x) loga∣-ax+b∣=loga∣ax+b∣
∣-ax+b∣=∣ax+b∣ 所以b=0
此时f(x)=loga∣ax|
a是底数大于0, ∣ax|在(0,+∞)上时增函数,
根据复合函数“同增异减”的原则,底数a必须大于1.
因为f(b-2)=f(-2)=f(2) 且a+1>2
又f(x) 在(0,+∞)上单调递增,所以f(a+1)> f(2)
即f(a+1) > f(b-2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询