已知函数f(x)=(a+1)lnx+ax^2+1 讨论函数的单调性
1个回答
展开全部
显然函数定义域:x∈(0,+∞)
求导:f'(x)=(a+1)/x+2ax
=(2ax^2+a+1)/x
1.a=0
f'(x)=1/x>0
故f(x)在全域单增
2.a>0
f'(x)>0
故f(x)在全域单增
3.-1<a<0
令f'(x)=0
则x=根号下(-(a+1)/2a)
列表
x (0,根号下(-(a+1)/2a) 根号下(-(a+1)/2a) (根号下(-(a+1)/2a),+∞)
f'(x) + 0 -
f(x) ↗ 极大值 ↘
故f(x)在(0,根号下(-(a+1)/2a)上单增,在(根号下(-(a+1)/2a),+∞)上单减
4.a≤-1
f'(x)≤0
故f(x)在全域单减
综上a≥0时,f(x)域上单增
-1<a<0时,f(x)在(0,根号下(-(a+1)/2a)上单增,在(根号下(-(a+1)/2a),+∞)上单减
a≤-1时,f(x)在全域单减
如果您有什么不明白的请随时问我,祝您学习进步
求导:f'(x)=(a+1)/x+2ax
=(2ax^2+a+1)/x
1.a=0
f'(x)=1/x>0
故f(x)在全域单增
2.a>0
f'(x)>0
故f(x)在全域单增
3.-1<a<0
令f'(x)=0
则x=根号下(-(a+1)/2a)
列表
x (0,根号下(-(a+1)/2a) 根号下(-(a+1)/2a) (根号下(-(a+1)/2a),+∞)
f'(x) + 0 -
f(x) ↗ 极大值 ↘
故f(x)在(0,根号下(-(a+1)/2a)上单增,在(根号下(-(a+1)/2a),+∞)上单减
4.a≤-1
f'(x)≤0
故f(x)在全域单减
综上a≥0时,f(x)域上单增
-1<a<0时,f(x)在(0,根号下(-(a+1)/2a)上单增,在(根号下(-(a+1)/2a),+∞)上单减
a≤-1时,f(x)在全域单减
如果您有什么不明白的请随时问我,祝您学习进步
参考资料: 我们爱数学团sniper123123
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |