☆☆简单题干,求证等差数列的,急!!!!!!
已知数列{an}满足a1=1,an*a(n+1)+2a(n+1)+1=0(n∈N+),求数列{1/(an+1)}为等差数列...
已知数列{an}满足 a1=1, an*a(n+1) + 2a(n+1) + 1 = 0 (n∈N+),
求数列{1/(an + 1)}为等差数列 展开
求数列{1/(an + 1)}为等差数列 展开
1个回答
展开全部
∵an·a(n+1) + 2a(n+1) + 1 = 0
∴an·a(n+1) + a(n+1) + 1 = -a(n+1)
an·a(n+1) + an + a(n+1) + 1 = an - a(n+1)
(an + 1)·(a(n+1) + 1)= an - a(n+1)
即:
an - a(n+1)
———————————— = 1
(an + 1)·(a(n+1) + 1)
则:
1 1
—————— — ——————
a(n+1) + 1 an + 1
an + 1 - 【a(n+1) - 1】
= ————————————
(an + 1)·(a(n+1) + 1)
an - a(n+1)
= ————————————
(an + 1)·(a(n+1) + 1)
= 1
∵a1=1
∴1/(an + 1)=1/(1+1)=1/2
则数列{1/(an + 1)}为首项是1/2,公差是1的等差数列。
∴an·a(n+1) + a(n+1) + 1 = -a(n+1)
an·a(n+1) + an + a(n+1) + 1 = an - a(n+1)
(an + 1)·(a(n+1) + 1)= an - a(n+1)
即:
an - a(n+1)
———————————— = 1
(an + 1)·(a(n+1) + 1)
则:
1 1
—————— — ——————
a(n+1) + 1 an + 1
an + 1 - 【a(n+1) - 1】
= ————————————
(an + 1)·(a(n+1) + 1)
an - a(n+1)
= ————————————
(an + 1)·(a(n+1) + 1)
= 1
∵a1=1
∴1/(an + 1)=1/(1+1)=1/2
则数列{1/(an + 1)}为首项是1/2,公差是1的等差数列。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询