数列求和 错位相减法
展开全部
解:an=2n/[2^(2n)]=2n/4^n
故Sn=2×1/4^1+2×2/4^2+2×3/4^3+……+2×n/4^n ①
则
1/4*Sn=2×1/4^2+2×2/4^3+2×3/4^4+……+2×n/4^(n+1) ②
则①-②得
3/4*Sn=2×1/4^1+2×1/4^2+2×1/4^3+……+2×1/4^n-2×n/4^(n+1)
=2(1/4^1+1/4^2+1/4^3+……+1/4^n)-2n/4^(n+1)
=2*1/4*[1-(1/4)^n]/(1-1/4)-2n/4^(n+1)
故
Sn=4/3*2*1/4*[1-(1/4)^n]/(1-1/4)-4/3*2n/4^(n+1)
=8/9-(8/9+2n/3)/4^n
故Sn=2×1/4^1+2×2/4^2+2×3/4^3+……+2×n/4^n ①
则
1/4*Sn=2×1/4^2+2×2/4^3+2×3/4^4+……+2×n/4^(n+1) ②
则①-②得
3/4*Sn=2×1/4^1+2×1/4^2+2×1/4^3+……+2×1/4^n-2×n/4^(n+1)
=2(1/4^1+1/4^2+1/4^3+……+1/4^n)-2n/4^(n+1)
=2*1/4*[1-(1/4)^n]/(1-1/4)-2n/4^(n+1)
故
Sn=4/3*2*1/4*[1-(1/4)^n]/(1-1/4)-4/3*2n/4^(n+1)
=8/9-(8/9+2n/3)/4^n
追问
您有多的题么 只需要题目和答案 朋友要练习
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询