数据分析中有哪些常见的数据模型
2016-11-10
要进行一次完整的数据分析,首先要明确数据分析思路,如从那几个方面开展数据分析,各方面都包含什么内容或指标。是分析框架,给出分析工作的宏观框架,根据框架中包含的内容,再运用具体的分析方法进行分析。
数据分析方法论的作用:
理顺分析思路,确保数据分析结构体系化
把问题分解成相关联的部分,并显示他们的关系
为后续数据分析的开展指引方向
确保分析结果的有效性和正确性
五大数据分析模型
1.PEST分析模型
政治环境:
包括一个国家的社会制度,执政党性质,政府的方针、政策、法令等。不同的政治环境对行业发展有不同的影响。
关键指标
政治体制,经济体制,财政政策,税收政策,产业政策,投资政策,专利数量,国防开支水平,政府补贴水平,民众对政治的参与度。
经济环境:
宏观和微观两个方面。
宏观:一个国家国民收入,国民生产总值以及变化情况,以通过这些指标反应国民经济发展水平和发展速度。
微观:企业所在地区的消费者收入水平、消费偏好、储蓄情况、就业程度等因素,这些因素决定着企业目前以及未来的市场大小。
关键指标
GDP及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。
社会环境:
包括一个国家或地区的居民受教育程度和文化水平、宗教信仰、风俗习惯、审美观点、价值观等。文化水平营销居民的需求层次,宗教信仰和风俗习惯会禁止或抵制某些活动的进行,价值观会影响居民对组织目标和组织活动存在本身的认可,审美观点则会影响人们对组织活动内容、活动方式以及活动成果的态度。
关键指标
人口规模、性别比例、年龄结构、出生率、死亡率、种族结构、妇女生育率、生活方式、购买习惯、教育状况、城市特点、宗教信仰状况等因素。
技术环境:
企业所处领域直接相关的技术手段发展变化,国家队科技开发的投资和支持重点,该领域技术发展动态和研究开发费用总额,技术转移和技术商品化速度,专利及其保护情况。
关键指标
新技术的发明和进展、折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度、国家重点支持项目、国家投入的研发费用、专利个数、专利保护情况。
2.5W2H模型
5W2H分析法主要针对5个W以及2个H提出的7个关键词进行数据指标的选取,根据选取的数据进行分析
3.逻辑树分析模型
将问题的所有子问题分层罗列,从最高层开始,并逐步向下扩展。
把一个已知问题当作树干,考虑这个问题和哪些问题有关,将相关的问题作为树枝加入到树干,一次类推,就会将问题扩展成一个问题树。
逻辑树能保证解决问题的过程完整性,将工作细化成便于操作的具体任务,确定各部分优先顺序,明确责任到个人。
逻辑树分析法三原则:
要素化:把相同问题总结归纳成要素
框架化:将各个要素组成框架,遵守不重不漏原则
关联化:框架内的各要素保持必要的相互关系,简单而不孤立
4.4P营销理论模型
产品:
能提供给市场,被人们使用和消费并满足人们某种需求的任何东西,包括有形产品、服务、人员、组织、观念和它们的组合。
价格:
购买产品时的价格,包括基本价格、折扣价格、支付期限等。影响价格的主要因素有需求、成本和竞争。
渠道:
产品从生产企业流转到用户手上全过程所经历的各个环节。
促销:
企业通过销售行为的改变来激励用户消费,以短期的行为促进消费的增长,吸引其他品牌用户或导致提钱消费来促进销售增长。
5.用户行为模型
用户行为指用户为获取、使用产品或服务才去的各种行动,首先要认知熟悉,然后试用,再决定是否继续消费使用,最后成为产品或服务的忠实用户。
行为轨迹:认知->熟悉->试用->使用->忠诚
最后
五大数据分析模型的应用场景根据数据分析所选取的指标不同也有所区别。
PEST分析模型主要针对宏观市场环境进行分析,从政治、经济、社会以及技术四个维度对产品或服务是否适合进入市场进行数据化的分析,最终得到结论,辅助判断产品或服务是否满足大环境。
5W2H分析模型的应用场景较广,可用于对用户行为进行分析以及产品业务分析。
逻辑树分析模型主要针对已知问题进行分析,通过对已知问题的细化分析,通过分析结论找到问题的最优解决方案。
4P营销理论模型主要用于公司或其中某一个产品线的整体运营情况分析,通过分析结论,辅助决策近期运营计划与方案。
用户行为分析模型应用场景比较单一,完全针对用户的行为进行研究分析。
当然,模型只是前人总结出的方式方法,对于我们实际工作中解决问题有引导作用,但是不可否认,具体问题还要具体分析,针对不同的情况需要进行不同的改进。
2024-10-28 广告
首先,我们先来了解一下哪些领域需要实时的数据分析呢?
1、医疗卫生与生命科学
2、保险业
3、电信运营商
4、能源行业
5、电子商务
6、运输行业
7、投机市场
8、执法领域
9、技术领域
常见数据分析模型有哪些?
1、行为事件分析:行为事件分析法具有强大的筛选、分组和聚合能力,逻辑清晰且使用简单,已被广泛应用。
2、漏斗分析模型:漏斗分析是一套流程分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。
3、留存分析模型留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始化行为的用户中,有多少人会进行后续行为。这是用来衡量产品对用户价值高低的重要方法。
4、分布分析模型分布分析是用户在特定指标下的频次、总额等的归类展现。
5、点击分析模型即应用一种特殊亮度的颜色形式,显示页面或页面组区域中不同元素点点击密度的图标。
6、用户行为路径分析模型用户路径分析,顾名思义,用户在APP或网站中的访问行为路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径的转换数据进行分析。
7、用户分群分析模型用户分群即用户信息标签化,通过用户的历史行为路径、行为特征、偏好等属性,将具有相同属性的用户划分为一个群体,并进行后续分析。
8、属性分析模型根据用户自身属性对用户进行分类与统计分析,比如查看用户数量在注册时间上的变化趋势、省份等分布情况。
模型再多,选择一种适合自己的就行,如何利益最大化才是我们追求的目标
留存分析模型:用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为;
全行为路径分析:根据每位用户在APP或网站中的行为事件,分析用户在APP或网站中各个模块的流转规律与特点,挖掘用户的访问或浏览模式,进而实现一些特定的业务用途;
漏斗分析模型:能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型;
热图分析模型:其实就是指页面点击分析;
事件分析模型:是针对用户行为的分析模型之一,也是用户行为数据分析的核心和基础;
用户分群模型:对用户进行精细化运营,用户分群能帮助企业更加了解用户,分析用户的属性特征、以及用户的行为特征;
用户分析模型:通过查看用户数量在注册时间上的变化趋势、查看用户按省份的分布情况等等,丰富用户画像维度;
黏性分析模型:在留存分析的基础上,对一些用户指标进行深化;
2、逻辑数据模型(常用的分:矢量数据模型,栅格数据模型和面向对象数据模型等)
3、物理数据模型(物理数据模型是指概念数据模型在计算机内部具体的存储形式和操作机制,即在物理磁盘上如何存放和存取,是系统抽象的最底层。)
帕累托/ABC分析模型:基于销售额或利润的贡献程度,将产品或客户划分为不同类别,以制定优先级的营销策略。
波士顿矩阵分析模型:综合考虑产品的市场增长率和市场份额,将产品分为不同类型,从而制定相应的产品战略。
转化漏斗模型:通过分析用户在业务流程中的转化和流失情况,找出问题环节并优化,以提高整体转化率。
购物篮关联规则模型:挖掘用户购买商品之间的关联关系,发现受欢迎的商品组合,以优化商品布局和促销策略。
留存分析模型:分析用户初始行为后的活跃程度和参与情况,以评估用户对产品或服务的持续兴趣。
用户画像分析模型:通过多维度数据的挖掘和分析,深入了解用户的属性和行为习惯,为精准营销提供参考。
这些说法更贴近日常生活习惯,有助于更好地理解这些数据分析模型的实际应用和价值。同时,它们也强调了数据分析在提高业务效果和制定市场策略方面的重要性。
广告 您可能关注的内容 |