有关于纳米的知识
2个回答
展开全部
什么是纳米?
纳米是尺寸或大小的度量单位,是一米的十亿分之一(千米→米→厘米→毫米→微米→纳米), 4倍原子大小,万分之一头发粗细。纳米技术是是指制造体积不超过数百个纳米的物体,其宽度相当于几十个原子聚集在一起。
纳米科技及其研究内容
纳米科学技术是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。 用扫描隧道显微镜的针尖将 原子一个个地排列成汉字, 汉字的大小只有几个纳米。纳米科技的研究内容包括: 创造和制备优异性能的纳米材料,设计、制备各种纳米器件和装置,探测和分析纳米区域的性质和现象 。
纳米科技研究目标和可能的应用
材料和制备:更轻、更强和可设计;长寿命和低维修费;以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料;生物材料和仿生材料;材料破坏过程中纳米级损伤的诊断和修复;
微电子和计算机技术:2010年实现线条为100nm的芯片,纳米技术的目标为:纳米结构的微处理器,效率提高一百万倍;10倍带宽的高频网络系统;兆兆比特的存储器(提高1000倍);集成纳米传感器系统;
医学与健康 快速、高效的基因团测序和基因诊断和基因治疗技术;用药的新方法和药物“导弹”技术;耐用的人体友好的人工组织和器官;复明和复聪器件;疾病早期诊断的纳米传感器系统
航天和航空 低能耗、抗辐照、高性能计算机;微型航天器用纳米测试、控制和电子设备;抗热障、耐磨损的纳米结构涂层材料
环境和能源 发展绿色能源和环境处理技术,减少污染和恢复被破坏的环境; 孔径为1nm的纳孔材料作为催化剂的载体;MCM-41有序纳孔材料(孔径10-100nm)用来祛除污物;纳米颗粒修饰的高分子材料
生物技术和农业 在纳米尺度上,按照预定的大小、对称性和排列来制备具有生物活性的蛋白质、核糖、核酸等。在纳米材料和器件中植入生物材料产生具有生物功能和其他功能的综合性能。,生物仿生化学药品和生物可降解材料,动植物的基因改善和治疗,测定DNA的基因芯片等。
纳 米 技 术 简 介
纳米(nanometer):长度单位的一种,1纳米=10-9米,即十亿分之一米。大约相当于头发粗细的八万分之一。“nanometer“"源自拉丁文,意思是"矮小"。纳米的确微乎其微,然而纳米构建的世界却是神奇而宏大的。21世纪,信息科学技术、生命科学技术和纳米科学技术是科学技术发展的主流。人们普遍认为,纳米技术是信息和生命科学技术能够进一步发展的共同基础。纳米技术所带动的技术革命及其对人类的影响,远远超过电子技术。
纳米技术:于细微之处显神奇
纳米技术是在纳米尺度内,通过对物质反应、传输和转变的控制来实现创造新的材料、器件和充分利用它们的特殊的性能,并且探索在纳米尺度内物质运动的新现象和新规律。由于纳米正好处于原子、分子为代表的微观世界和以人类活动空间为代表的宏观世界的中间地带,被称为纳米世界,也是物理、化学、材料科学、生命科学以及信息科学发展的新领地。纳米材料中包含了若干个原子、分子,使得人们可以在原子层面上进行材料和器件的设计和制备。几十个原子、分子或成千个原子、分子"组合"在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质,这种"组合"被称为"超分子"或"人工分子"。"超分子"的性质,如它的熔点、磁性、电容性、导电性、发光性和颜色及水溶性都有重大变化。当"超分子"继续长大或以通常的方式聚集成大块材料时,奇特的性质又会失去。通俗来说,纳米材料一方面可以被当作一种"超分子",充分地展现出量子效应;而另一方面它也可以被当作一种非常小的"宏观物质",以至于表现出前所未有的特性。同时, 许多化学和生物反应的过程也发生在纳米尺度的层面上,因此探测纳米尺度内物理、化学和生物性质的变化,将加深对生命科学的理解。对由数量不多的电子、原子或分子组成的体系中新规律的认识和如何操纵或组合他们,是当今纳米科学技术的主要问题之一。当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农业等方面。
纳米材料:材料科学领域的前沿
纳米科技发展中,纳米材料是它的前导,因为纳米材料集中体现了小尺寸、复杂结构、高集成度和强相互作用以及高比表面积等现代科学技术发展的特点,其中最应该指出的是纳米材料是将量子力学效应工程化或技术化的最好场合之一,可能会产生全新的物理、化学现象。现在可以用物理、化学及生物学的方法制备出只包含几百个或儿千个原子、分子的 "颗粒"。这些"颗粒"的尺寸只有几个纳米,它们很容易与外界的气体、流体甚至固体的原子发生反应,也就是说十分活泼。实验上发现如果将金属铜或铝做成几个纳米的颗粒,一遇到空气就会燃烧,发生爆炸。有人认为用纳米颗粒的粉体做成火箭的固体燃料将会有更大的推力。另外,用纳米金属颗粒粉体做催化剂,可加快化学反应过程,大大地提高化工合成的产率。
如果把金属纳米材料颗粒粉体制成块状金属材料,它会变得十分结实,强度比普通金属高十几倍,同时又可以像橡胶一样富于弹性。人们幻想有一天会使用这样的纳米钢材或纳米铝材制造出汽车、飞机或轮船,使它们的重量减少到原来的1/10。不仅如此,汽车或飞机的发动机由具有塑性的纳米陶瓷材料制成,可在更高的温度下运作,汽车跑得更快,飞机飞得更高。
氧化物纳米颗粒最大的本领是在电场作用下或在光的照射下迅速改变颜色。平常人们戴的变色镜变色的速度较慢,用纳米材料做成的变色镜就不一样了,变色速度很快,用它做士兵的防护激光镜是再好不过了。用纳米氧化物材料做成广告板,在电、光的作用下会变得更加绚丽多彩。
半导体纳米材料的最大用处是可以发出各种颜色的光,可以做成超小型激光的光源。它还可以吸收太阳光中的光能,把它们直接变成电能,这种技术一旦实现,太阳能汽车、太阳能住宅就会成为现实。利用特种半导体纳米材料使海水淡化已得到应用;半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护士已得到应用。
目前科学家正在致力于研究的碳纳米管材料,是一种非常独特的材料。它是石墨中一层或若干层碳原子卷曲而成的笼状"纤维",内部是空的,外部直径只有几到几十个纳米。这种材料的密度是钢的1/6,而强度却是钢的l00倍。用这样轻而柔软,又非常结实的材料做防弹背心是最好不过的。如果用碳纳米管作绳索,是惟一可以从月球上挂到地球表面,而不被自身重量所拉断的绳索,如果用它做成地球月球乘人的电梯,人们到月球定居就很容易了。纳米管的细尖极易发射电子,用于做电子枪,可以做成几厘米厚的壁挂式电视屏,这是电视制造业新的方向。
利用纳米技术还可以以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料,制作生物材料和仿生材料,并能在材料破坏过程中进行纳米级损伤的诊断和修复。
纳米器件:给信息技术带来革命
纳米科技的另一主要研究领域是设计、制备新型纳米结构和纳米器件。就像30年前,微电子器件取代真空电子管器件给信息技术带来革命一样,纳米结构将再次给信息技术带来革命。
把自由运动的电子囚禁在一个小的纳米颗粒内,或者在一根非常细的短金属线内,线的宽度只有几个纳米,会发生十分奇妙的事情。由于颗粒内的电子运动受到限制,原来可以在费米动量以下连续具有任意动量的电子状态,变成只能具有某动量值,也就是电子动量或能量被量子化了。自由电子能量量子化的最直接的结果表现在:当在金属颗粒的两端加上合适电压,金属颗粒导电;而电压不合适时,金属颗粒不导电。这样一来,原来在宏观世界内奉为经典的欧姆定律在纳米世界内就不再成立了。还有一种奇怪的现象,当金属颗粒具有了负电性,它的库仑力足以排斥下一个电子从外电路进入金属颗粒内,从而切断了电流的连续性。这使得人们想到是否可以发展用一个电子来控制的电子器件,即所谓单电子器件。单电子器件的尺寸很小,把它们集成起来做成电脑芯片,电脑的容量和计算速度不知要提高多少倍。然而,事情可不是人们想像的那么简单。实际上,被囚禁的电子可不那么"老实",按照量子力学的规律,有时它可以穿过"监狱"的"墙壁"逃逸出来,这会使芯片的动作不可控制,同时还需要新的设计使单电子器件变成集成电路。所以尽管电子器件已经在实验室里得以实现,但是真要用在工业上还需要时间。
被囚禁在小尺寸内的电子的另一种贡献,是会使材料发出强的光。"量子点列激光器"或"级联激光器"的尺寸极小,但发光的强度很高,用很低的电压就可以驱动它们发生蓝光或绿光,用来读写光盘可使光盘的存贮密度提高几倍。如果用"囚禁"原子的小颗粒量子点来存贮数据,制成量子磁盘,存贮度可提高成千上万倍,会给信息存贮的技术带来一场革命。
纳米加工:有待人类显身手
为了研究纳米科学和应用纳米科学的研究成果,首先要能按照人们的意愿在纳米尺度的世界中自由地剪裁、安排材料,这一技术被称为纳米加工技术。实际上,一方面纳米加工技术是纳米材料的重要基础,另一方面纳米加工技术中包含了许多人们尚未认识清楚的纳米科学问题。比如说,在一个粗细为几纳米的孔或线里,原子的扩散就与宏观世界里的扩散大不一样。一般而言,原子运动的自由程为几个微米,在此长度上,原子发生碰撞,进行热扩散器壁的作用可忽略不计,可在纳米孔或线内,原子的扩散主要是靠与孔壁的碰撞来完成的。再举一个例子,一般认为物体之间相互运动时的摩擦力主要来源于物体表面的不平整性,即物体表面越光滑,它们之间的摩擦力越小。而纳米材料表面越小,相互之间距离很近,以至于两块材料表面上的原子会发生化学键合而产生对相互运动的阻力。因此,在纳米世界里,所有的加工都必须在原子尺寸的层面上考虑。纳米加工技术可以使不同材质的材料集成在一起,它具有芯片的功能,又可以探测到电磁波、光波(包括可见光、红外线、紫外线等)信号,同时还能完成电脑的命令。如果将这一集成器件安装在卫星上,可以使卫星的重量大大地减小,更容易发射,成本也更低。当前人们已经在考虑用"小鸟"卫星部分地代替现有的卫星系统。
纳米是尺寸或大小的度量单位,是一米的十亿分之一(千米→米→厘米→毫米→微米→纳米), 4倍原子大小,万分之一头发粗细。纳米技术是是指制造体积不超过数百个纳米的物体,其宽度相当于几十个原子聚集在一起。
纳米科技及其研究内容
纳米科学技术是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工又被称为纳米技术。 用扫描隧道显微镜的针尖将 原子一个个地排列成汉字, 汉字的大小只有几个纳米。纳米科技的研究内容包括: 创造和制备优异性能的纳米材料,设计、制备各种纳米器件和装置,探测和分析纳米区域的性质和现象 。
纳米科技研究目标和可能的应用
材料和制备:更轻、更强和可设计;长寿命和低维修费;以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料;生物材料和仿生材料;材料破坏过程中纳米级损伤的诊断和修复;
微电子和计算机技术:2010年实现线条为100nm的芯片,纳米技术的目标为:纳米结构的微处理器,效率提高一百万倍;10倍带宽的高频网络系统;兆兆比特的存储器(提高1000倍);集成纳米传感器系统;
医学与健康 快速、高效的基因团测序和基因诊断和基因治疗技术;用药的新方法和药物“导弹”技术;耐用的人体友好的人工组织和器官;复明和复聪器件;疾病早期诊断的纳米传感器系统
航天和航空 低能耗、抗辐照、高性能计算机;微型航天器用纳米测试、控制和电子设备;抗热障、耐磨损的纳米结构涂层材料
环境和能源 发展绿色能源和环境处理技术,减少污染和恢复被破坏的环境; 孔径为1nm的纳孔材料作为催化剂的载体;MCM-41有序纳孔材料(孔径10-100nm)用来祛除污物;纳米颗粒修饰的高分子材料
生物技术和农业 在纳米尺度上,按照预定的大小、对称性和排列来制备具有生物活性的蛋白质、核糖、核酸等。在纳米材料和器件中植入生物材料产生具有生物功能和其他功能的综合性能。,生物仿生化学药品和生物可降解材料,动植物的基因改善和治疗,测定DNA的基因芯片等。
纳 米 技 术 简 介
纳米(nanometer):长度单位的一种,1纳米=10-9米,即十亿分之一米。大约相当于头发粗细的八万分之一。“nanometer“"源自拉丁文,意思是"矮小"。纳米的确微乎其微,然而纳米构建的世界却是神奇而宏大的。21世纪,信息科学技术、生命科学技术和纳米科学技术是科学技术发展的主流。人们普遍认为,纳米技术是信息和生命科学技术能够进一步发展的共同基础。纳米技术所带动的技术革命及其对人类的影响,远远超过电子技术。
纳米技术:于细微之处显神奇
纳米技术是在纳米尺度内,通过对物质反应、传输和转变的控制来实现创造新的材料、器件和充分利用它们的特殊的性能,并且探索在纳米尺度内物质运动的新现象和新规律。由于纳米正好处于原子、分子为代表的微观世界和以人类活动空间为代表的宏观世界的中间地带,被称为纳米世界,也是物理、化学、材料科学、生命科学以及信息科学发展的新领地。纳米材料中包含了若干个原子、分子,使得人们可以在原子层面上进行材料和器件的设计和制备。几十个原子、分子或成千个原子、分子"组合"在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质,这种"组合"被称为"超分子"或"人工分子"。"超分子"的性质,如它的熔点、磁性、电容性、导电性、发光性和颜色及水溶性都有重大变化。当"超分子"继续长大或以通常的方式聚集成大块材料时,奇特的性质又会失去。通俗来说,纳米材料一方面可以被当作一种"超分子",充分地展现出量子效应;而另一方面它也可以被当作一种非常小的"宏观物质",以至于表现出前所未有的特性。同时, 许多化学和生物反应的过程也发生在纳米尺度的层面上,因此探测纳米尺度内物理、化学和生物性质的变化,将加深对生命科学的理解。对由数量不多的电子、原子或分子组成的体系中新规律的认识和如何操纵或组合他们,是当今纳米科学技术的主要问题之一。当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农业等方面。
纳米材料:材料科学领域的前沿
纳米科技发展中,纳米材料是它的前导,因为纳米材料集中体现了小尺寸、复杂结构、高集成度和强相互作用以及高比表面积等现代科学技术发展的特点,其中最应该指出的是纳米材料是将量子力学效应工程化或技术化的最好场合之一,可能会产生全新的物理、化学现象。现在可以用物理、化学及生物学的方法制备出只包含几百个或儿千个原子、分子的 "颗粒"。这些"颗粒"的尺寸只有几个纳米,它们很容易与外界的气体、流体甚至固体的原子发生反应,也就是说十分活泼。实验上发现如果将金属铜或铝做成几个纳米的颗粒,一遇到空气就会燃烧,发生爆炸。有人认为用纳米颗粒的粉体做成火箭的固体燃料将会有更大的推力。另外,用纳米金属颗粒粉体做催化剂,可加快化学反应过程,大大地提高化工合成的产率。
如果把金属纳米材料颗粒粉体制成块状金属材料,它会变得十分结实,强度比普通金属高十几倍,同时又可以像橡胶一样富于弹性。人们幻想有一天会使用这样的纳米钢材或纳米铝材制造出汽车、飞机或轮船,使它们的重量减少到原来的1/10。不仅如此,汽车或飞机的发动机由具有塑性的纳米陶瓷材料制成,可在更高的温度下运作,汽车跑得更快,飞机飞得更高。
氧化物纳米颗粒最大的本领是在电场作用下或在光的照射下迅速改变颜色。平常人们戴的变色镜变色的速度较慢,用纳米材料做成的变色镜就不一样了,变色速度很快,用它做士兵的防护激光镜是再好不过了。用纳米氧化物材料做成广告板,在电、光的作用下会变得更加绚丽多彩。
半导体纳米材料的最大用处是可以发出各种颜色的光,可以做成超小型激光的光源。它还可以吸收太阳光中的光能,把它们直接变成电能,这种技术一旦实现,太阳能汽车、太阳能住宅就会成为现实。利用特种半导体纳米材料使海水淡化已得到应用;半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护士已得到应用。
目前科学家正在致力于研究的碳纳米管材料,是一种非常独特的材料。它是石墨中一层或若干层碳原子卷曲而成的笼状"纤维",内部是空的,外部直径只有几到几十个纳米。这种材料的密度是钢的1/6,而强度却是钢的l00倍。用这样轻而柔软,又非常结实的材料做防弹背心是最好不过的。如果用碳纳米管作绳索,是惟一可以从月球上挂到地球表面,而不被自身重量所拉断的绳索,如果用它做成地球月球乘人的电梯,人们到月球定居就很容易了。纳米管的细尖极易发射电子,用于做电子枪,可以做成几厘米厚的壁挂式电视屏,这是电视制造业新的方向。
利用纳米技术还可以以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料,制作生物材料和仿生材料,并能在材料破坏过程中进行纳米级损伤的诊断和修复。
纳米器件:给信息技术带来革命
纳米科技的另一主要研究领域是设计、制备新型纳米结构和纳米器件。就像30年前,微电子器件取代真空电子管器件给信息技术带来革命一样,纳米结构将再次给信息技术带来革命。
把自由运动的电子囚禁在一个小的纳米颗粒内,或者在一根非常细的短金属线内,线的宽度只有几个纳米,会发生十分奇妙的事情。由于颗粒内的电子运动受到限制,原来可以在费米动量以下连续具有任意动量的电子状态,变成只能具有某动量值,也就是电子动量或能量被量子化了。自由电子能量量子化的最直接的结果表现在:当在金属颗粒的两端加上合适电压,金属颗粒导电;而电压不合适时,金属颗粒不导电。这样一来,原来在宏观世界内奉为经典的欧姆定律在纳米世界内就不再成立了。还有一种奇怪的现象,当金属颗粒具有了负电性,它的库仑力足以排斥下一个电子从外电路进入金属颗粒内,从而切断了电流的连续性。这使得人们想到是否可以发展用一个电子来控制的电子器件,即所谓单电子器件。单电子器件的尺寸很小,把它们集成起来做成电脑芯片,电脑的容量和计算速度不知要提高多少倍。然而,事情可不是人们想像的那么简单。实际上,被囚禁的电子可不那么"老实",按照量子力学的规律,有时它可以穿过"监狱"的"墙壁"逃逸出来,这会使芯片的动作不可控制,同时还需要新的设计使单电子器件变成集成电路。所以尽管电子器件已经在实验室里得以实现,但是真要用在工业上还需要时间。
被囚禁在小尺寸内的电子的另一种贡献,是会使材料发出强的光。"量子点列激光器"或"级联激光器"的尺寸极小,但发光的强度很高,用很低的电压就可以驱动它们发生蓝光或绿光,用来读写光盘可使光盘的存贮密度提高几倍。如果用"囚禁"原子的小颗粒量子点来存贮数据,制成量子磁盘,存贮度可提高成千上万倍,会给信息存贮的技术带来一场革命。
纳米加工:有待人类显身手
为了研究纳米科学和应用纳米科学的研究成果,首先要能按照人们的意愿在纳米尺度的世界中自由地剪裁、安排材料,这一技术被称为纳米加工技术。实际上,一方面纳米加工技术是纳米材料的重要基础,另一方面纳米加工技术中包含了许多人们尚未认识清楚的纳米科学问题。比如说,在一个粗细为几纳米的孔或线里,原子的扩散就与宏观世界里的扩散大不一样。一般而言,原子运动的自由程为几个微米,在此长度上,原子发生碰撞,进行热扩散器壁的作用可忽略不计,可在纳米孔或线内,原子的扩散主要是靠与孔壁的碰撞来完成的。再举一个例子,一般认为物体之间相互运动时的摩擦力主要来源于物体表面的不平整性,即物体表面越光滑,它们之间的摩擦力越小。而纳米材料表面越小,相互之间距离很近,以至于两块材料表面上的原子会发生化学键合而产生对相互运动的阻力。因此,在纳米世界里,所有的加工都必须在原子尺寸的层面上考虑。纳米加工技术可以使不同材质的材料集成在一起,它具有芯片的功能,又可以探测到电磁波、光波(包括可见光、红外线、紫外线等)信号,同时还能完成电脑的命令。如果将这一集成器件安装在卫星上,可以使卫星的重量大大地减小,更容易发射,成本也更低。当前人们已经在考虑用"小鸟"卫星部分地代替现有的卫星系统。
迈安纳(上海)仪器科技有限公司_
2024-09-03 广告
2024-09-03 广告
纳米药物制备方法主要包括溶剂蒸发法、超临界流体法、纳米沉淀法、微乳法和微流控技术等。迈安纳在纳米药物制备领域处于行业领先地位,特别是在微流控技术的应用上。其创新的制备方法能够有效控制纳米颗粒的尺寸和形态,满足不同药物研发和生产的需求。迈安纳...
点击进入详情页
本回答由迈安纳(上海)仪器科技有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询