拓扑排序序列有6种。先找到第一个没有被指的,就是C1,加入序列。然后擦掉跟C1有关的边,此时C2和C3都满足没有被指,选一个,比如选C2,加入序列,擦掉和C2有关的边,这个时候可以选C3,C4,C5或C6,如此而已。
数据结构拓扑排序实际上是离散数学中的概念。
这里不打算说太多形式化的定义,形式化的定义教科书上或者上面给的链接中就说的很详细。还是以上面选课的例子来描述这两个概念。假设我们在学习完了算法这门课后,可以选修机器学习或者计算机图形学。这个或者表示,学习机器学习和计算机图形学这两门课之间没有特定的先后顺序。
因此,在我们所有可以选择的课程中,任意两门课程之间的关系要么是确定的(即拥有先后关系),要么是不确定的(即没有先后关系),绝对不存在互相矛盾的关系(即环路)。以上就是偏序的意义,抽象而言,有向图中两个顶点之间不存在环路,至于连通与否,是无所谓的。所以,有向无环图必然是满足偏序关系的。
理解了偏序的概念,那么全序就好办了。所谓全序,就是在偏序的基础之上,有向无环图中的任意一对顶点还需要有明确的关系(反映在图中,就是单向连通的关系,注意不能双向连通,那就成环了)。
可见,全序就是偏序的一种特殊情况。回到我们的选课例子中,如果机器学习需要在学习了计算机图形学之后才能学习(可能学的是图形学领域相关的机器学习算法……),那么它们之间也就存在了确定的先后顺序,原本的偏序关系就变成了全序关系。
实际上,很多地方都存在偏序和全序的概念。比如对若干互不相等的整数进行排序,最后总是能够得到唯一的排序结果(从小到大,下同)。这个结论应该不会有人表示疑问吧:)但是如果我们以偏序/全序的角度来考虑一下这个再自然不过的问题,可能就会有别的体会了。
拓展到拓扑排序中,结果具有唯一性的条件也是其所有顶点之间都具有全序关系。如果没有这一层全序关系,那么拓扑排序的结果也就不是唯一的了。在后面会谈到,如果拓扑排序的结果唯一,那么该拓扑排序的结果同时也代表了一条哈密顿路径。
2024-11-22 广告
对一个有向无环图简称G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序的序列,简称拓扑序列。
由拓扑序列的生成方法的出图中三种不同拓扑排序的序列:第一种:c1、c2、c4、c3、c5、c6,第二种:c1、c2、c4、c3、c6、c5,第三种:c1、c3、c2、c4、c5、c6。
扩展资料:
拓扑排序执行步骤
由AOV网构造拓扑序列的拓扑排序算法主要是循环执行以下两步,直到不存在入度为0的顶点为止。
首先选择一个入度为0的顶点并输出之。
从网中删除此顶点和所有出边。
循环结束后,若输出的顶点数小于网中的顶点数,则输出“有回路”信息,否则输出的顶点序列就是一种拓扑序列。
参考资料来源:百度百科-拓扑排序
1,2,3,5,6,7,4
1,3,2,4,5,6,7
拓扑序列就是从没有箭头指的那个开始,下一个必须也没有被箭头指(这个叫什么不记得了)。。
二:c1,c2,c4,c6,c3,c5,c7
三:c1,c3,c2,c5,c6,c4,c7