设数列<an>满足:a1=3,an+1=1+an/1-an (n>=1)则a2014=多少
设数列<an>满足:a1=3,an+1=1+an/1-an(n>=1)则a2014=多少注:an+1的n+1为角标...
设数列<an>满足:a1=3,an+1=1+an/1-an (n>=1)则a2014=多少 注:an+1的n+1为角标
展开
2个回答
展开全部
a(n+1) = [1+a(n)]/[1-a(n)],
特征方程为:
r = (1+r)/(1-r), r - r^2 = 1 + r, 0 = 1+r^2.无实数解。
因此,数列必为周期数列。
a(1) = 3,
a(2) = [1 + a(1)]/[1-a(1)] = (1+3)/(1-3) = -2.
a(3) = [1+a(2)]/[1-a(2)] = (1-2)/(1+2) = -1/3.
a(4) = [1+a(3)]/[1-a(3)] = [1-1/3]/[1+1/3] = 1/2.
a(5) = [1+a(4)]/[1-a(4)] = [1+1/2]/[1-1/2]= 3 = a(1).
a(6) = [1+a(5)]/[1-a(5)] = [1+a(1)]/[1-a(1)] = a(2).
a(7) = a(3),
a(8) = a(4).
...
a(4n-3) = a(1) = 3,
a(4n-2) = a(2) = -2,
a(4n-3) = a(3) = -1/3.
a(4n) = a(4) = 1/2.
a(2014) = a(4*504 - 2) = a(2) = -2.
特征方程为:
r = (1+r)/(1-r), r - r^2 = 1 + r, 0 = 1+r^2.无实数解。
因此,数列必为周期数列。
a(1) = 3,
a(2) = [1 + a(1)]/[1-a(1)] = (1+3)/(1-3) = -2.
a(3) = [1+a(2)]/[1-a(2)] = (1-2)/(1+2) = -1/3.
a(4) = [1+a(3)]/[1-a(3)] = [1-1/3]/[1+1/3] = 1/2.
a(5) = [1+a(4)]/[1-a(4)] = [1+1/2]/[1-1/2]= 3 = a(1).
a(6) = [1+a(5)]/[1-a(5)] = [1+a(1)]/[1-a(1)] = a(2).
a(7) = a(3),
a(8) = a(4).
...
a(4n-3) = a(1) = 3,
a(4n-2) = a(2) = -2,
a(4n-3) = a(3) = -1/3.
a(4n) = a(4) = 1/2.
a(2014) = a(4*504 - 2) = a(2) = -2.
追问
哦 我算到第4个发现又不是等差,又不是等比,就不想算了,,原来有规律的。。谢了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询