4个回答
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
不一样。 x+y+z=4, z=4-x-y, √[1+(z')^2+(z')^2]=√3. 10. ∫ydS =∫ y√[1+(z')^2+(z')^2]dxdy = √3∫ ydxdy , 积分域关于x轴对称,y是奇函数,则积分为0. 若...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
利用极坐标计算二重积分,有公式
∫∫f(x,y)dxdy=∫∫f(rcosθ,rsinθ)rdrdθ ,其中积分区域是一样的。
I=∫dx∫(x^2+y^2)^-1/2 dy
x的积分上限是1,下限0
y的积分上限是x,下限是x²
积分区域D即为直线y=x,和直线y=x²在区间[0,1]所围成的面积,转换为极坐标后,θ的范围为[0,π/4],下面计算r的范围:
因为y=x²的极坐标方程为:rsinθ=r²cos²θ r=sinθ/cos²θ
因为直线y=kx和曲线y=x²的交点为(0,0),(k,k²),所以在极坐标中r的取值范围为[0,sinθ/cos²θ],则积分I化为极坐标的积分为
I=∫dθ∫1/√(rcosθ)²+(rsinθ)²rdr
=∫dθ∫dr (θ范围[0,π/4],r范围[0,sinθ/cos²θ])
=∫(sinθ/cos²θ)dθ(θ范围[0,π/4])
=∫(-1/cos²θ)dcosθ
=|1/cosθ|(θ范围[0,π/4])
=1/cos(π/4)-1/cos0
=√2-1
满意请采纳。
∫∫f(x,y)dxdy=∫∫f(rcosθ,rsinθ)rdrdθ ,其中积分区域是一样的。
I=∫dx∫(x^2+y^2)^-1/2 dy
x的积分上限是1,下限0
y的积分上限是x,下限是x²
积分区域D即为直线y=x,和直线y=x²在区间[0,1]所围成的面积,转换为极坐标后,θ的范围为[0,π/4],下面计算r的范围:
因为y=x²的极坐标方程为:rsinθ=r²cos²θ r=sinθ/cos²θ
因为直线y=kx和曲线y=x²的交点为(0,0),(k,k²),所以在极坐标中r的取值范围为[0,sinθ/cos²θ],则积分I化为极坐标的积分为
I=∫dθ∫1/√(rcosθ)²+(rsinθ)²rdr
=∫dθ∫dr (θ范围[0,π/4],r范围[0,sinθ/cos²θ])
=∫(sinθ/cos²θ)dθ(θ范围[0,π/4])
=∫(-1/cos²θ)dcosθ
=|1/cosθ|(θ范围[0,π/4])
=1/cos(π/4)-1/cos0
=√2-1
满意请采纳。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
必须要先对x积分才行。
原积分=∫(0->1)dy ∫(0->y) e^(y^2)dx
=∫(0->1) ye^(y^2)dy
=(1/2)∫(0->1) e^(y^2)d(y^2)
=(1/2)e^(y^2) |(0->1)
=(e-1)/2
原积分=∫(0->1)dy ∫(0->y) e^(y^2)dx
=∫(0->1) ye^(y^2)dy
=(1/2)∫(0->1) e^(y^2)d(y^2)
=(1/2)e^(y^2) |(0->1)
=(e-1)/2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询