已知a、b、c属于(0,1),求证(1-a)b,(1-b)c,(1-c)a不能同时大于1/4

百度网友38a5258
2014-07-05 · 超过64用户采纳过TA的回答
知道小有建树答主
回答量:260
采纳率:0%
帮助的人:146万
展开全部
网上的,给你复制下
证明:
假设(1-a)b,(1-b)c,(1-c)a都大于1/4
因0<a<1,0<b<1,0<c<1
所以有
√((1-a)b)>1/2,√((1-b)c)>1/2,√((1-c)a)>1/2

√((1-a)b)+√((1-b)c)+√((1-c)a) > 3/2 (*)
而由基本不等式:a,b∈R+, a+b≥2√(ab), 有
√((1-a)b)≤(1-a+b)/2,
√((1-b)c)≤(1-b+c)/2,
√((1-c)a)≤(1-c+a)/2
所以
√((1-a)b)+√((1-b)c)+√((1-c)a)≤3/2
这与已知的:√((1-a)b)+√((1-b)c)+√((1-c)a) > 3/2 (*)矛盾
所以假设不成立,
故(1-a)b,(1-b)c,(1-c)a中至少有一个小于或等于1/4
证毕
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式