线性代数,矩阵可逆证明

一个人郭芮
高粉答主

2014-09-25 · GR专注于各种数学解题
一个人郭芮
采纳数:37942 获赞数:84704

向TA提问 私信TA
展开全部
A^m=0
那么
E-A^m=E
即(E-A)(E+A+A^2+A^3+……+A^m-1)=E

而矩阵可逆的定义是:
在线性代数中,给定一个n阶方阵A,
若存在一n阶方阵B使得AB=BA=E(或AB=E、BA=E任满足一个),其中E为n阶单位矩阵,则称A是可逆的,且B是A的逆阵,记作A^(-1)。

所以显然E-A是可逆的,
其逆矩阵就是E+A+A^2+A^3+……+A^m-1
追问
E-A^m=E
?
即(E-A)(E+A+A^2+A^3+……+A^m-1)=E
追答
这个数学公式不知道么?
a^n -b^n
=(a-b)(a^n-1 +a^n-2 *b+ ……+ a *b^n-2 +b^n-1)
那么在这里,
E-A^m
=E^m -A^m
=(E-A)(E^m-1 +E^m-2 *A+ ……+ E *A^m-2 +A^m-1)
=(E-A)(E+A+A^2+A^3+……+A^m-1)

当然就得到了
(E-A)(E+A+A^2+A^3+……+A^m-1)=E
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式