请教高中数学问题,求高手解答,要有详细步骤哦~
展开全部
4,(1)f(x)是奇函数,设-1<=x1<x2<=1,x1-x2<0,
[f(x1)-f(x2)]/(x1-x2)=[f(x1)+f(-x2)]/[x1+(-x2)]>0(根据已知视a=x1,b=-x2)
f(x1)-f(x2)<0 f(x)在[-1,1]上是增函数
(2)转化得-1<=x+1/2<=1,且-1<=1/(x-1)<=1,且x+1/2<1/(x-1)
-3/2<=x<=1/2,且x<=0或x>=2,且x<-1或1<x<3/2
综合-3/2<=x<-1
(3) f(x)最大值为f(1)=1,1<=m^2-2am+1对任意a∈[-1,1] 恒成立
m^2-2am>=0对任意a∈[-1,1] 恒成立
看作关于a的一次函数,则当a=-1,a=1有
m^2-2m>=0,m<=0或m>=2
m^2+2m>=0,m<=-2或m>=0
综合,m<=-2或m>=2
5,f(x)=(x-1)^+1
t<0,f(x)在区间上是减函数,h(t)=f(t)=(t-1)^2+1,g(t)=f(t+1)=t^2+1
0<=t<1/2,h(t)=f(t)=(t-1)^2+1,g(t)=f(1)=1
1/2<=t<1,h(t)=f(t+1)=t^2+1,g(t)=f(1)=1
t>=1,f(x)在区间上是增函数,h(t)=f(t+1)=t^2+1,,g(t)=f(t)=(t-1)^2+1
综合,h(t)={(t-1)^2+1 (t<1/2)
=t^2+1 (t>=1/2)
f(t+1)=t^2+1 (t<0)
g(t)={f(1)=1 (0<=t<1)
f(t)=(t-1)^2+1 (t>=1)
[f(x1)-f(x2)]/(x1-x2)=[f(x1)+f(-x2)]/[x1+(-x2)]>0(根据已知视a=x1,b=-x2)
f(x1)-f(x2)<0 f(x)在[-1,1]上是增函数
(2)转化得-1<=x+1/2<=1,且-1<=1/(x-1)<=1,且x+1/2<1/(x-1)
-3/2<=x<=1/2,且x<=0或x>=2,且x<-1或1<x<3/2
综合-3/2<=x<-1
(3) f(x)最大值为f(1)=1,1<=m^2-2am+1对任意a∈[-1,1] 恒成立
m^2-2am>=0对任意a∈[-1,1] 恒成立
看作关于a的一次函数,则当a=-1,a=1有
m^2-2m>=0,m<=0或m>=2
m^2+2m>=0,m<=-2或m>=0
综合,m<=-2或m>=2
5,f(x)=(x-1)^+1
t<0,f(x)在区间上是减函数,h(t)=f(t)=(t-1)^2+1,g(t)=f(t+1)=t^2+1
0<=t<1/2,h(t)=f(t)=(t-1)^2+1,g(t)=f(1)=1
1/2<=t<1,h(t)=f(t+1)=t^2+1,g(t)=f(1)=1
t>=1,f(x)在区间上是增函数,h(t)=f(t+1)=t^2+1,,g(t)=f(t)=(t-1)^2+1
综合,h(t)={(t-1)^2+1 (t<1/2)
=t^2+1 (t>=1/2)
f(t+1)=t^2+1 (t<0)
g(t)={f(1)=1 (0<=t<1)
f(t)=(t-1)^2+1 (t>=1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询