已知数列{a n }满足a 1 =2,a n +1 =a n - .(1)求数列{a n }的通项公式;(2
已知数列{an}满足a1=2,an+1=an-.(1)求数列{an}的通项公式;(2)设bn=nan·2n,求数列{bn}的前n项和Sn...
已知数列{a n }满足a 1 =2,a n +1 =a n - .(1)求数列{a n }的通项公式;(2)设b n =na n ·2 n ,求数列{b n }的前n项和S n
展开
召温书ou
推荐于2016-12-03
·
超过63用户采纳过TA的回答
关注
(1) a n = .(2) S n =n·2 n +1 . |
试题分析:(1)由已知得a n +1 -a n =- ,又a 1 =2, ∴当n≥2时,a n =a 1 +(a 2 -a 1 )+(a 3 -a 2 )+…+(a n -a n -1 )= , a 1 =2也符合上式,∴对一切n∈N * ,a n = . 6分 (2)由(1)知:b n =na n ·2 n =(n+1)·2 n , ∴S n =2×2+3×2 2 +4×2 3 +…+(n+1)×2 n ,① 2S n =2×2 2 +3×2 3 +…+n×2 n +(n+1)×2 n +1 ,② ∴①-②得-S n =2×2+2 2 +2 3 +…+2 n -(n+1)×2 n +1 =2+ -(n+1)×2 n +1 =2+2 n +1 -2-(n+1)·2 n +1 =-n·2 n +1 ,∴S n =n·2 n +1 . 12分 点评:数列解答题考查的的热点为求数列的通项公式、等差(比)数列的性质及数列的求和问题.因此在复习中,要特别注意加强对由递推公式求通项公式、求有规律的非等差(比)数列的前n项和等的专项训练. |
收起
为你推荐: