如图,在等腰△ABC中,AB=AC,将△ABC沿DE折叠,使底角顶点C落在三角形三边的垂直平分线的交点O处,若BE=
如图,在等腰△ABC中,AB=AC,将△ABC沿DE折叠,使底角顶点C落在三角形三边的垂直平分线的交点O处,若BE=BO,则∠ABC的度数为()A.54°B.60°C.6...
如图,在等腰△ABC中,AB=AC,将△ABC沿DE折叠,使底角顶点C落在三角形三边的垂直平分线的交点O处,若BE=BO,则∠ABC的度数为( )A.54°B.60°C.63°D.72°
展开
1个回答
展开全部
解:连接OC,
设∠OCE=x°,
由折叠的性质可得:OE=CE,
∴∠COE=∠OCE=x°,
∵三角形三边的垂直平分线的交于点O,
∴OB=OC,且O是△ABC外接圆的圆心,
∴∠OBC=∠OCE=x°,∠BOC=2∠A,
∵∠OEB=∠OCE+∠COE=2x°,BE=BO,
∴∠BOE=∠OEB=2x°,
∵△OBE中,∠OBC+∠BOE+∠OEB=180°,
∴x+2x+2x=180,
解得:x=36,
∴∠OBC=∠OCE=36°,
∴∠BOC=180°-∠OBC-∠OCE=108°,
∴∠A=
∠BOC=54°,
∵AB=AC,
∴∠ABC=∠ACB=
=63°.
故选C.
设∠OCE=x°,
由折叠的性质可得:OE=CE,
∴∠COE=∠OCE=x°,
∵三角形三边的垂直平分线的交于点O,
∴OB=OC,且O是△ABC外接圆的圆心,
∴∠OBC=∠OCE=x°,∠BOC=2∠A,
∵∠OEB=∠OCE+∠COE=2x°,BE=BO,
∴∠BOE=∠OEB=2x°,
∵△OBE中,∠OBC+∠BOE+∠OEB=180°,
∴x+2x+2x=180,
解得:x=36,
∴∠OBC=∠OCE=36°,
∴∠BOC=180°-∠OBC-∠OCE=108°,
∴∠A=
1 |
2 |
∵AB=AC,
∴∠ABC=∠ACB=
180°?∠A |
2 |
故选C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询