这道二重积分的怎么做,重点是后面角度和r的范围怎么确定,求详解 10
这道二重积分的怎么做,重点是后面角度和r的范围怎么确定,求详解这道二重积分的怎么做,重点是后面角度和r的范围怎么确定,求详解,第5小题...
这道二重积分的怎么做,重点是后面角度和r的范围怎么确定,求详解这道二重积分的怎么做,重点是后面角度和r的范围怎么确定,求详解,第5小题
展开
展开全部
积分域 D 是圆 (x-a)^2 + y^2 = a^2, 即 r = 2acost 的上半圆,
0 ≤ r ≤ 2acost, 0 ≤ t ≤ π/2. D 的面积是 S = (π/2)a^2
∫∫<D> f(x,y)dxdy 是常数,设为 A, 给定等式两边在 D 上积分,得
A = ∫∫<D> xydxdy - AS
= ∫<0,π/2> sintcostdt ∫<0, 2acost> r^3dr - (π/2)Aa^2
= 4a^4∫<0,π/2> sint(cost)^5dt - (π/2)Aa^2
= -4a^4∫<0,π/2> (cost)^5dcost - (π/2)Aa^2
= -(2/3)a^4[(cost)^6]<0,π/2> - (π/2)Aa^2, 得
[1+(π/2)a^2]A = (2/3)a^4, A = (2/3)a^4/[1+(π/2)a^2]
f(x,y) = xy - (2/3)a^4/[1+(π/2)a^2]
0 ≤ r ≤ 2acost, 0 ≤ t ≤ π/2. D 的面积是 S = (π/2)a^2
∫∫<D> f(x,y)dxdy 是常数,设为 A, 给定等式两边在 D 上积分,得
A = ∫∫<D> xydxdy - AS
= ∫<0,π/2> sintcostdt ∫<0, 2acost> r^3dr - (π/2)Aa^2
= 4a^4∫<0,π/2> sint(cost)^5dt - (π/2)Aa^2
= -4a^4∫<0,π/2> (cost)^5dcost - (π/2)Aa^2
= -(2/3)a^4[(cost)^6]<0,π/2> - (π/2)Aa^2, 得
[1+(π/2)a^2]A = (2/3)a^4, A = (2/3)a^4/[1+(π/2)a^2]
f(x,y) = xy - (2/3)a^4/[1+(π/2)a^2]
追问
能换种格式吗,这个格式看不来啊(●—●)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询