如图,空间四边形ABCD中,E、F分别是AB、AD的中点,G、H分别在BC、CD上,且BG:GC=DH:HC=1:2(1)求证

如图,空间四边形ABCD中,E、F分别是AB、AD的中点,G、H分别在BC、CD上,且BG:GC=DH:HC=1:2(1)求证:E、F、G、H四点共面.(2)设EG与HF... 如图,空间四边形ABCD中,E、F分别是AB、AD的中点,G、H分别在BC、CD上,且BG:GC=DH:HC=1:2(1)求证:E、F、G、H四点共面.(2)设EG与HF交于点P,求证:P、A、C三点共线. 展开
 我来答
阿瑟4481
推荐于2017-09-19 · TA获得超过277个赞
知道答主
回答量:208
采纳率:0%
帮助的人:145万
展开全部
证明:(1)∵,E、F分别是AB、AD的中点
∴EF∥BD
∵BG:GC=DH:HC=1:2
∴GH∥BD
∴EF∥GH
E、F、G、H四点共面.
(2)∵EG与HF交于点P
∵EG?面ABC
∴P在面ABC内,
同理P在面DAC
又∵面ABC∩面DAC=AC
∴P在直线AC上
∴P、A、C三点共线.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式