观察下列各式:1×2×3×4+1=25=52;2×3×4×5+1=121=112;3×4×5×6+1=361=192;…根据上述算式所反映
观察下列各式:1×2×3×4+1=25=52;2×3×4×5+1=121=112;3×4×5×6+1=361=192;…根据上述算式所反映出的规律,猜想“任意四个连续正整...
观察下列各式:1×2×3×4+1=25=52;2×3×4×5+1=121=112;3×4×5×6+1=361=192;…根据上述算式所反映出的规律,猜想“任意四个连续正整数的积与1的和一定是一个完全平方数”,你认为这个猜想正确吗?说说你的理由.
展开
展开全部
正确.
理由:设四个连续的正整数为n、(n+1)、(n+2)、(n+3)则
n(n+1)(n+2)(n+3)+1,
=(n2+3n)(n2+3n+2)+1,
=(n2+3n)2+2(n2+3n)+1,
=(n2+3n+1)2.
理由:设四个连续的正整数为n、(n+1)、(n+2)、(n+3)则
n(n+1)(n+2)(n+3)+1,
=(n2+3n)(n2+3n+2)+1,
=(n2+3n)2+2(n2+3n)+1,
=(n2+3n+1)2.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询