已知函数f(x)=sin2x+23sinxcosx+3cos2x.(Ⅰ)求函数f(x)的最小正周期及单调递增区间;(Ⅱ)已知f
已知函数f(x)=sin2x+23sinxcosx+3cos2x.(Ⅰ)求函数f(x)的最小正周期及单调递增区间;(Ⅱ)已知f(a)=3,且α∈(0,π2),求α的值....
已知函数f(x)=sin2x+23sinxcosx+3cos2x.(Ⅰ)求函数f(x)的最小正周期及单调递增区间;(Ⅱ)已知f(a)=3,且α∈(0,π2),求α的值.
展开
1个回答
展开全部
(Ⅰ)∵f(x)=sin2x+2
sinxcosx+3cos2x,
=
sin2x+2-
+1
=
sin2x+cos2x+2
=2sin(2x+
)+2.
所以最小正周期为:T=
=π
当-
+2kπ≤2x+
≤
+2kπ(k∈Z),即-
+kπ≤x≤
+kπ(k∈Z)时函数单调增,
∴函数f(x)的单调增区间为[-
+kπ,
+kπ](k∈Z).
(Ⅱ)∵f(x)=2sin(2x+
)+2,
∴f(α)=2sin(2α+
)+2=3,
∴sin(2α+
)=
,
∵α∈(0,
),
∴2α+
∈(
,
),
∴2α+
3 |
=
3 |
1?cos2x |
2 |
=
3 |
=2sin(2x+
π |
6 |
所以最小正周期为:T=
2π |
2 |
当-
π |
2 |
π |
6 |
π |
2 |
π |
3 |
π |
6 |
∴函数f(x)的单调增区间为[-
π |
3 |
π |
6 |
(Ⅱ)∵f(x)=2sin(2x+
π |
6 |
∴f(α)=2sin(2α+
π |
6 |
∴sin(2α+
π |
6 |
1 |
2 |
∵α∈(0,
π |
2 |
∴2α+
π |
6 |
π |
6 |
7π |
6 |
∴2α+