如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE. (1)图1
如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE.(1)图1中是否存在与∠BDE相等的角?若存在,请找...
如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE. (1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由; (2)求证:BE=EC; (3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示).
展开
1个回答
展开全部
(1)∠DCA=∠BDE.
证明:∵AB=AC,DC=DE,
∴∠ABC=∠ACB,∠DEC=∠DCE.
∴∠BDE=∠DEC-∠DBC=∠DCE-∠ACB=∠DCA.
(2)过点E作EG∥AC,交AB于点G,如图1,
则有∠DAC=∠DGE.
在△DCA和△EDG中,
∴△DCA≌△EDG(AAS).
∴DA=EG,CA=DG.
∴DG=AB.
∴DA=BG.
∵AF∥EG,DF=EF,
∴DA=AG.
∴AG=BG.
∵EG∥AC,
∴BE=EC.
(3)过点E作EG∥AC,交AB的延长线于点G,如图2,
∵AB=AC,DC=DE,
∴∠ABC=∠ACB,∠DEC=∠DCE.
∴∠BDE=∠DBC-∠DEC=∠ACB-∠DCE=∠DCA.
∵AC∥EG,
∴∠DAC=∠DGE.
在△DCA和△EDG中,
∴△DCA≌△EDG(AAS).
∴DA=EG,CA=DG
∴DG=AB=1.
∵AF∥EG,
∴△ADF∽△GDE.
∴
=
.
∵DF=kFE,
∴DE=EF-DF=(1-k)EF.
∴
=
.
∴AD=
.
∴GE=AD=
.
过点A作AH⊥BC,垂足为H,如图2,
∵AB=AC,AH⊥BC,
∴BH=CH.
∴BC=2BH.
∵AB=1,∠ABC=α,
∴BH=AB?cos∠ABH=cosα.
∴BC=2cosα.
∵AC∥EG,
∴△ABC∽△GBE.
∴
=
.
∴
=
.
∴BE=
.
∴BE的长为
证明:∵AB=AC,DC=DE,
∴∠ABC=∠ACB,∠DEC=∠DCE.
∴∠BDE=∠DEC-∠DBC=∠DCE-∠ACB=∠DCA.
(2)过点E作EG∥AC,交AB于点G,如图1,
则有∠DAC=∠DGE.
在△DCA和△EDG中,
|
∴△DCA≌△EDG(AAS).
∴DA=EG,CA=DG.
∴DG=AB.
∴DA=BG.
∵AF∥EG,DF=EF,
∴DA=AG.
∴AG=BG.
∵EG∥AC,
∴BE=EC.
(3)过点E作EG∥AC,交AB的延长线于点G,如图2,
∵AB=AC,DC=DE,
∴∠ABC=∠ACB,∠DEC=∠DCE.
∴∠BDE=∠DBC-∠DEC=∠ACB-∠DCE=∠DCA.
∵AC∥EG,
∴∠DAC=∠DGE.
在△DCA和△EDG中,
|
∴△DCA≌△EDG(AAS).
∴DA=EG,CA=DG
∴DG=AB=1.
∵AF∥EG,
∴△ADF∽△GDE.
∴
AD |
DG |
DF |
DE |
∵DF=kFE,
∴DE=EF-DF=(1-k)EF.
∴
AD |
1 |
kEF |
(1?k)EF |
∴AD=
k |
1?k |
∴GE=AD=
k |
1?k |
过点A作AH⊥BC,垂足为H,如图2,
∵AB=AC,AH⊥BC,
∴BH=CH.
∴BC=2BH.
∵AB=1,∠ABC=α,
∴BH=AB?cos∠ABH=cosα.
∴BC=2cosα.
∵AC∥EG,
∴△ABC∽△GBE.
∴
BC |
BE |
AC |
GE |
∴
2cosα |
BE |
1 | ||
|
∴BE=
2kcosα |
1?k |
∴BE的长为