求矩阵的特征值和特征向量: A=[2 -1 2 / 5 -3 3 / -1 0 -2]
3个回答
展开全部
|A-λE|=
2-λ -1 2
5 -3-λ 3
-1 0 -2-λ
r2-2r1-r3
2-λ -1 2
2+2λ -1-λ 1+λ
-1 0 -2-λ
= (-1-λ)[-λ(-2-λ)+1]
= -(λ+1)^3
A的特征值为-1,-1,-1。
A+E =
3 -1 2
5 -2 3
-1 0 -1
化为
1 0 1
0 1 1
0 0 0
得属于特征值 -1 的全部特征向量:k(1,1,-1)', k为非零的任意数。
简介
特征值是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
展开全部
|A-λE|=
2-λ -1 2
5 -3-λ 3
-1 0 -2-λ
r2-2r1-r3
2-λ -1 2
2+2λ -1-λ 1+λ
-1 0 -2-λ
c1+2c2,c3+c2
-λ -1 1
0 -1-λ 0
-1 0 -2-λ
= (-1-λ)[-λ(-2-λ)+1]
= -(λ+1)(λ^2+2λ+1)
= -(λ+1)^3
A的特征值为-1,-1,-1.
A+E =
3 -1 2
5 -2 3
-1 0 -1
化为
1 0 1
0 1 1
0 0 0
得属于特征值 -1 的全部特征向量:k(1,1,-1)', k为非零的任意数.
2-λ -1 2
5 -3-λ 3
-1 0 -2-λ
r2-2r1-r3
2-λ -1 2
2+2λ -1-λ 1+λ
-1 0 -2-λ
c1+2c2,c3+c2
-λ -1 1
0 -1-λ 0
-1 0 -2-λ
= (-1-λ)[-λ(-2-λ)+1]
= -(λ+1)(λ^2+2λ+1)
= -(λ+1)^3
A的特征值为-1,-1,-1.
A+E =
3 -1 2
5 -2 3
-1 0 -1
化为
1 0 1
0 1 1
0 0 0
得属于特征值 -1 的全部特征向量:k(1,1,-1)', k为非零的任意数.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
研一的?
更多追问追答
追问
不是
追答
我去年学过
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询