如图Ⅰ,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S 1 、S 2 、S 3 表示,则不难证明S

如图Ⅰ,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3.(1)如图Ⅱ,分别以直角三角形ABC三边为直径向外作... 如图Ⅰ,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S 1 、S 2 、S 3 表示,则不难证明S 1 =S 2 +S 3 . (1)如图Ⅱ,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S 1 、S 2 、S 3 表示,设BC=a,AC=b,AB=c,证明:S 1 =S 2 +S 3 .(2)如图Ⅲ,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S 1 、S 2 、S 3 表示,请你确定S 1 、S 2 、S 3 之间的关系.(不必证明)(3)若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S 1 、S 2 、S 3 表示,请你猜想S 1 、S 2 、S 3 之间的关系?.(不必证明) 展开
 我来答
僑瀢禅床圩叒楗
推荐于2017-09-27 · TA获得超过448个赞
知道答主
回答量:137
采纳率:50%
帮助的人:58.4万
展开全部
(1)∵S 3 =
π
8
AC 2 ,S 2 =
π
8
BC 2 ,S 1 =
π
8
AB 2
π
8
AC 2 +
π
8
BC 2 =
π
8
AB 2
π
8
b 2 +
π
8
a 2 =
π
8
c 2
在Rt△ABC中,
∵b 2 +a 2 =c 2
∴S 2 +S 3 =S 1

(2)S 1 =S 2 +S 3
理由:由题意可得出:S 1 =
3
4
AB 2 ,S 2 =
3
4
BC 2 ,S 3 =
3
4
AC 2
∴则S 1 =
3
4
c2,S 2 =
3
4
a2,S 3 =
3
4
b2
∴S 2 +S 3 =
3
4
(a2+b2)=
3
4
c2=S 1
即S 1 =S 2 +S 3

(3)由(1)(2)可得出:S 1 =S 2 +S 3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式