设n阶矩阵A的各行元素均为0,且A的秩为n-1,则齐次线性方程组AX=0的通解

设n阶矩阵A的各行元素均为0,且A的秩为n-1,则齐次线性方程组AX=0的通解为... 设n阶矩阵A的各行元素均为0,且A的秩为n-1,则齐次线性方程组AX=0的通解为 展开
 我来答
清尔笔之椽9081
推荐于2016-12-01 · 超过68用户采纳过TA的回答
知道答主
回答量:145
采纳率:75%
帮助的人:57.8万
展开全部
A的秩为n-1, 说明 AX=0 的基础解系含n-r(A)=1个解向量.
A的各行元素之和均为0, 说明 A(1,1,...,1)^T = (0,0,...,)^T = 0
即 (1,1,...,1)^T 是 AX=0 的非零解, 故是AX=0的基础解系
所以通解为 k(1,1,...,1)^T .

注: 事实上, 其它任一非零数字都可以, 只是"A的各行元素之和"给人的第一感觉就是直接加起来, 即都乘1加起来.

设A=
1 -1 0
2 1 -3
-5 3 2
你用这个矩阵乘 (1,1,1)^T 试试, 看看是否等于0.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式