对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方

对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根(c≠... 对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根(c≠0),则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2-4ac=(2am+b)2成立.其中正确地只有(  )A.①②B.②③C.③④D.①④ 展开
 我来答
奥村燐1554
2015-02-04 · TA获得超过166个赞
知道答主
回答量:109
采纳率:0%
帮助的人:149万
展开全部
①因为a+c=0,a≠0,所以①a、c异号,所以△=b2-4ac>0,所以方程有两个实数根;
②若方程ax2+bx+c=0有两个不等的实数根,则△=b2-4ac>0,所以方程cx2+bx+a=0也一定有两个不等的实数根;若c=0,则方程cx2+bx+a=0为一次,没有两个不等实数根;
③若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立;
④若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,
即am2=-(bm+c),
而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=-4abm-4ac+4abm+b2=b2-4ac.
所以①④成立.
故选D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式