求数学高中解析几何解答题一道!!!算到一半算不出来了!!!!!!Σ(дlll)
1个回答
展开全部
(1)A(-2,0),B(0,2),
AB的中点为(-1,1),AB的斜率=1,
∴AB的垂直平分线是y-1=-(x+1),即y=-x,与直线y=x交于C(0,0),
AC=2,∴圆C的方程是x^2+y^2=4.①
(2)把y=kx+1代入①,得x^2+k^2x^2+2kx+1=4,
整理得(1+k^2)x^2+2kx-3=0,②
设P(x1,y1),Q(x2,y2),则x1+x2=-2k/(1+k^2),x1x2=-3/(1+k^2),
y1y2=(kx1+1)(kx2+1)=k^2x1x2+k(x1+x2)+1,
∴向量OP*OQ=x1x2+y1y2=(1+k^2)x1x2+k(x1+x2)+1
=-2-2k^2/(1+k^2)=-2,
解得k=0.
(3)由②,△=4k^2+12(1+k^2)=4(4k^2+3),
|PQ|=√△/(1+k^2)*√(1+k^2)=√△/√(1+k^2),
l1:y=-x/k+1,代入①,x^2+x^2/k^2-2x/k+1=4,
(k^2+1)x^2-2kx-3k^2=0,
△‘=4k^2+12k^2(k^2+1)=4k^2(3k^2+4),
|MN|=√△’/(k^2+1)*√[1+(-1/k)^2]=√△‘/[|k|√(1+k^2),
四边形PMQN的面积S=(1/2)|PQ|*|MN|=(1/2)√(△△’)/[|k|(1+k^2)]
=2√[(4k^2+3)(3k^2+4)]/(1+k^2),
设u=k^2+1>=1,则S=2√[(4u-1)(3u+1)]/u=2√(12+1/u-1/u^2)
=2√[-(1/u-1/2)^2+49/4]
<=2√(49/4)=7,当u=2,k=土1时取等号,
∴S的最大值是7.
AB的中点为(-1,1),AB的斜率=1,
∴AB的垂直平分线是y-1=-(x+1),即y=-x,与直线y=x交于C(0,0),
AC=2,∴圆C的方程是x^2+y^2=4.①
(2)把y=kx+1代入①,得x^2+k^2x^2+2kx+1=4,
整理得(1+k^2)x^2+2kx-3=0,②
设P(x1,y1),Q(x2,y2),则x1+x2=-2k/(1+k^2),x1x2=-3/(1+k^2),
y1y2=(kx1+1)(kx2+1)=k^2x1x2+k(x1+x2)+1,
∴向量OP*OQ=x1x2+y1y2=(1+k^2)x1x2+k(x1+x2)+1
=-2-2k^2/(1+k^2)=-2,
解得k=0.
(3)由②,△=4k^2+12(1+k^2)=4(4k^2+3),
|PQ|=√△/(1+k^2)*√(1+k^2)=√△/√(1+k^2),
l1:y=-x/k+1,代入①,x^2+x^2/k^2-2x/k+1=4,
(k^2+1)x^2-2kx-3k^2=0,
△‘=4k^2+12k^2(k^2+1)=4k^2(3k^2+4),
|MN|=√△’/(k^2+1)*√[1+(-1/k)^2]=√△‘/[|k|√(1+k^2),
四边形PMQN的面积S=(1/2)|PQ|*|MN|=(1/2)√(△△’)/[|k|(1+k^2)]
=2√[(4k^2+3)(3k^2+4)]/(1+k^2),
设u=k^2+1>=1,则S=2√[(4u-1)(3u+1)]/u=2√(12+1/u-1/u^2)
=2√[-(1/u-1/2)^2+49/4]
<=2√(49/4)=7,当u=2,k=土1时取等号,
∴S的最大值是7.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询