数学根号是什么意思?
3个回答
展开全部
根号的由来
现在,我们都习以为常地使用根号(如 等等),并感到它使用起来既简明又方便。那么,根号是怎样产生和演变成现在这种样子的呢?
古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。阿拉伯人用 表示 。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴,变成“ ”。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写 4是2, 9是3,并用 8, 8表 , 。但是这种写法未得到普遍的认可与采纳。
与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,现在的 ,当时有人写成R.q.4352。现在的 ,用数学家邦别利(1526—1572年)的符号可以写成R.c.?7p.R.q.14╜,其中“?╜”相当于今天用的括号,P相当于今天用的加号(那时候,连加减号“+”“-”还没有通用)。
直到十七世纪,法国数学家笛卡尔(1596—1650年)第一个使用了现今用的根号“ ”。在一本书中,笛卡尔写道:“如果想求 的平方根,就写作 ,如果想求 的立方根,则写作 。”
这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式。
现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号 的使用,比如25的立方根用表示。以后,诸如 等等形式的根号渐渐使用开来。
由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,不是从天上掉下来的。
电脑中的根号是√的形式。
现在,我们都习以为常地使用根号(如 等等),并感到它使用起来既简明又方便。那么,根号是怎样产生和演变成现在这种样子的呢?
古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。阿拉伯人用 表示 。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴,变成“ ”。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写 4是2, 9是3,并用 8, 8表 , 。但是这种写法未得到普遍的认可与采纳。
与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,现在的 ,当时有人写成R.q.4352。现在的 ,用数学家邦别利(1526—1572年)的符号可以写成R.c.?7p.R.q.14╜,其中“?╜”相当于今天用的括号,P相当于今天用的加号(那时候,连加减号“+”“-”还没有通用)。
直到十七世纪,法国数学家笛卡尔(1596—1650年)第一个使用了现今用的根号“ ”。在一本书中,笛卡尔写道:“如果想求 的平方根,就写作 ,如果想求 的立方根,则写作 。”
这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式。
现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号 的使用,比如25的立方根用表示。以后,诸如 等等形式的根号渐渐使用开来。
由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,不是从天上掉下来的。
电脑中的根号是√的形式。
追问
好长啊啊啊啊啊……
追答
望采纳!
TableDI
2024-07-18 广告
2024-07-18 广告
Excel函数公式大全中的计数功能主要涵盖了几种常用的函数。其中,`COUNT`函数用于统计指定范围内非空单元格的数量;`COUNTIF`函数则能基于特定条件进行计数,如统计特定部门或满足某个数值条件的单元格数;而`COUNTIFS`函数更...
点击进入详情页
本回答由TableDI提供
展开全部
就是开方
追问
开方?
追答
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
表示运算数的平方根的内部。 X的
根,X域非负实数。这是唯一的x为实数和不小于0时的根是有意义的。
Y = X的平方根。
制作的Y = X的数目的平方。
如果x = 0时,y是0,因此,只有根数0 = 0,如果x大于0,则y满足有两个,它们是实数,并且彼此相反的状态
号。这是一个正的一个负。他们被称为x的平方根。一个被称为正平方根。上
机械化为:y = x的平方根表示满足y平方= x的非负实数y(x是一个非负实数)。 x对应,对应唯一的一个非负实数y
非负实数
根,X域非负实数。这是唯一的x为实数和不小于0时的根是有意义的。
Y = X的平方根。
制作的Y = X的数目的平方。
如果x = 0时,y是0,因此,只有根数0 = 0,如果x大于0,则y满足有两个,它们是实数,并且彼此相反的状态
号。这是一个正的一个负。他们被称为x的平方根。一个被称为正平方根。上
机械化为:y = x的平方根表示满足y平方= x的非负实数y(x是一个非负实数)。 x对应,对应唯一的一个非负实数y
非负实数
追问
那(3的根-2的根)^0=
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询