已知函数f(x)=|x-a|-9x+a,x∈[1,6],a∈R.(Ⅰ)若a=1,试判断并证明函数f(x)的单调性;(Ⅱ)当a

已知函数f(x)=|x-a|-9x+a,x∈[1,6],a∈R.(Ⅰ)若a=1,试判断并证明函数f(x)的单调性;(Ⅱ)当a∈(1,6)时,求函数f(x)的最大值的表达式... 已知函数f(x)=|x-a|-9x+a,x∈[1,6],a∈R.(Ⅰ)若a=1,试判断并证明函数f(x)的单调性;(Ⅱ)当a∈(1,6)时,求函数f(x)的最大值的表达式M(a). 展开
 我来答
危凝颖6652
2015-01-29 · TA获得超过136个赞
知道答主
回答量:136
采纳率:50%
帮助的人:72.2万
展开全部
(1)∵a=1,x∈∈[1,6],
∴f(x)=|x-1|-
9
x
+1=x-
9
x

∴f′(x)=1+
9
x2
>0,
∴f(x)是增函数;
(2)因为1<a<6,所以f(x)=
2a?(x+
9
x
),1≤x≤a
x?
9
x
,a<x≤6

①当1<a≤3时,f(x)在[1,a]上是增函数,在[a,6]上也是增函数,
所以当x=6时,f(x)取得最大值为
9
2

②当3<a<6时,f(x)在[1,3]上是增函数,在[3,a]上是减函数,在[a,6]上是增函数,
而f(3)=2a-6,f(6)=
9
2

当3<a≤
21
4
 时,2a-6≤
9
2
,当x=6时,f(x)取得最大值为
9
2

21
4
≤a<6时,2a-6>
9
2
,当x=3时,f(x)取得最大值为2a-6.
综上得,M(a)=
9
2
,1≤a≤
21
4
2a?6,
21
4
<a≤6
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式