已知等比数列{an}的首项a1=13,前n项和为Sn,满足s1、2s2、3s3成等差数列;(Ⅰ)求{an}的通项公式;(Ⅱ
已知等比数列{an}的首项a1=13,前n项和为Sn,满足s1、2s2、3s3成等差数列;(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=2-(11+an+11?an+1)),...
已知等比数列{an}的首项a1=13,前n项和为Sn,满足s1、2s2、3s3成等差数列;(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=2-(11+an+11?an+1)),数列bn的前n项和为Tn,求证:Tn<13.
展开
1个回答
展开全部
解答:(Ⅰ)解:∵S1、2S2、3S3成等差数列,
∴4S2=S1+3S3,
当q=1时,不符合,
当q≠1时,得4?
=a1+3?
,
由a1=
,解得q=
或q=0(舍),
∴an=(
)n.
(Ⅱ)证明:bn=2-(
+
)=2-(
+
)
=2-
-
=1-
+1-
=(1-
)+(1-
)
=
?
,
由
<
,
>
,得
<
?
,
∴bn<
?
,
从而Tn<(
?
)+(
?
)+…+(
?
)=
?
<
,
∴Tn<
.
∴4S2=S1+3S3,
当q=1时,不符合,
当q≠1时,得4?
a1(1?q2) |
1?q |
a1(1?q3) |
1?q |
由a1=
1 |
3 |
1 |
3 |
∴an=(
1 |
3 |
(Ⅱ)证明:bn=2-(
1 |
1+an |
1 |
1?an+1 |
1 | ||
1+(
|
1 | ||
1?(
|
=2-
1 | ||
1+(
|
1 | ||
1?(
|
=1-
1 | ||
1+(
|
1 | ||
1?(
|
=(1-
3n |
3n+1 |
3n+1 |
3n+1?1 |
=
1 |
3n+1 |
1 |
3n+1?1 |
由
1 |
3n+1 |
1 |
3n |
1 |
3n+1?1 |
1 |
3n+1 |
1 |
3n+1?1 |
1 |
3n |
1 |
3n+1 |
∴bn<
1 |
3n |
1 |
3n+1 |
从而Tn<(
1 |
3 |
1 |
32 |
1 |
32 |
1 |
33 |
1 |
3n |
1 |
3n+1 |
1 |
3 |
1 |
3n+1 |
1 |
3 |
∴Tn<
1 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询