展开全部
答案:1/√x的昌并原函数是2√x+C,(C是任键迅差意常数)
导函数法:对于幂函数f(x)=ax^m+C而稿皮言,容易求得其导函数是f`(x)=amx^(m-1),因此由于题目中给出的为导函数f`(x)=1/√x=x^(-1/2),
可知am=1,m-1=-1/2。解这个二元一次方程组可以得到a=2,m=1/2,所以f(x)=2x^(1/2)+C=2√x+C。
扩展资料
若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数。
例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-07-11 · 知道合伙人金融证券行家
关注
展开全部
答案:1/√x的原函数是2√x+C,(C是任意常数)做法可以有以下两种:导函数法:对于幂函数f(x)=ax^m+C而言,容易求得其导函数是f`(x)=amx^(m-1),因此由于题目中给出的为导函数f`(x)=1/√x=x^(-1/2),可知am=1,m-1=-1/2。解这个二元一次方程组可以得到a=2,m=1/2,所以f(x)=2x^(1/2)+C=2√x+C. 积分毁陆表法:即f(x)=∫1/√xdx,经查下表,根者余裂据地2条可知f(x)=2√x+C. 附录常用积分表(以下C指任意常数): ∫adx=ax+C,(a为常数) ∫x^adx=x^(a+1)/(a+1)+C,其中a为常首闭数,且a≠-1 ∫1/xdx=lnx+C ∫e^xdx=e^x+C ∫a^xdx=a^x/lna+C,其中a>0,且a≠1 ∫sinxdx=-cosx+C ∫cosxdx=sinx+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询