若多元函数在某点不连续,则在此点偏导数一定不存在 这句话对吗
展开全部
错的。
多元函数中,函数f(x,y)在某点是否连续与f在该点处两个偏导数是否都存在两者没有关系!例如f=|x|+|y|;f=xy/(x^2+y^2)。
偏导数f'x(x0,y0)表示固定面上一点对x轴的切线斜率;偏导数f'y(x0,y0)表示固定面上一点对y轴的切线斜率。
可积函数的有界
任何一个可积函数一定是有界的,但是需要注意的是,有界函数不一定可积。在其定义域上的每一点都不连续的函数。狄利克雷函数是处处不连续函数的一个例子。
若f(x)为一函数,定义域和值域都是实数,若针对每一个x,都存在ε>0 ,使得针对每一个δ>0,都可以找到y,使下式成立,则f(x)为处处不连续函数:0< |x−y|<δ 且|f(x)−f(y)|≥ε。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
对的,函数既然间断了,那导数必然不存在
但多元函数连续性和可偏导性没关系,必须同时有可偏导且连续,可以推出可微,进而可以推出连续和可偏导。反之可微可以推出连续,其他什么都没有。
但多元函数连续性和可偏导性没关系,必须同时有可偏导且连续,可以推出可微,进而可以推出连续和可偏导。反之可微可以推出连续,其他什么都没有。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
错的。多元函数中,函数f(x,y)在某点是否连续与f在该点处两个偏导数是否都存在两者没有关系!例如f=|x|+|y|;f=xy/(x^2+y^2)。答对请给赞蟹蟹
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这句话是错的,可由逆否命题证明,既然你知道多元函数在某一点可偏导,并不能保证其在这一点连续。
那么根据其逆否命题可以得出,多元函数在某一点不连续,并不能保证其在这一点不能偏导。
例:xy/(x?+y?)
那么根据其逆否命题可以得出,多元函数在某一点不连续,并不能保证其在这一点不能偏导。
例:xy/(x?+y?)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
错的 反例 分段函数f(x,y)
x*y/(x^2+y^2) , (x,y)!=0
0,(x,y)=0
偏导存在fx(0,0)=0 fy(0,0)=0 但不连续
x*y/(x^2+y^2) , (x,y)!=0
0,(x,y)=0
偏导存在fx(0,0)=0 fy(0,0)=0 但不连续
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |