已知x1,x2是一元二次方程x²+4X-3=0的两个实数根,求下列各式的值(1)x2/x1+x1/x2(2)(x1-1)(x2
已知x1,x2是一元一次方程x²+4X-3=0的两个实数根,求下列各式的值(1)x2/x1+x1/x2(2)(x1-1)(x2-1)(3)(x1-x2)&sup...
已知x1,x2是一元一次方程x²+4X-3=0的两个实数根,求下列各式的值(1)x2/x1+x1/x2(2)(x1-1)(x2-1) (3)(x1-x2)² (4)1/x1²+1/x2²
展开
1个回答
展开全部
x²+4x-3=0
a=1,b=4,c=-3
根据韦达定理
x1+x2=-b/a=-4
x1×x2=c/a=-3
(1)x2/x1+x1/x2=(x2)²/(x1x2)+(x1)²/(x1x2) ```` 同分
=【(x2)²+(x1)²】/(x1x2)
=【(x1+x2)²-2x1x2】/(-3)
=(16+6)/(-3)
=-22/3
(2)(x1-1)(x2-1)=x1x2 - (x1+x2)+1
=-3-(-4)+1
=2
(3)(x1-x2)² =(x1+x2)²-4(x1x2)=16-(-12)=28
(4)1/x1²+1/x2² =(1/x1+1/x2)² - 2×【1/(x1x2)】
=(x1+x2)/(x1x2)+2/3
=-2/3
a=1,b=4,c=-3
根据韦达定理
x1+x2=-b/a=-4
x1×x2=c/a=-3
(1)x2/x1+x1/x2=(x2)²/(x1x2)+(x1)²/(x1x2) ```` 同分
=【(x2)²+(x1)²】/(x1x2)
=【(x1+x2)²-2x1x2】/(-3)
=(16+6)/(-3)
=-22/3
(2)(x1-1)(x2-1)=x1x2 - (x1+x2)+1
=-3-(-4)+1
=2
(3)(x1-x2)² =(x1+x2)²-4(x1x2)=16-(-12)=28
(4)1/x1²+1/x2² =(1/x1+1/x2)² - 2×【1/(x1x2)】
=(x1+x2)/(x1x2)+2/3
=-2/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询