高等数学。 请问图中题怎么做??…!
2个回答
展开全部
原式=∫dx/x(x+1)(x²-x+1)=∫[A/x+B/(x+1)+(Cx+D)/(x²-x+1)]dx
解得:A=1,B=-1/3,C=-2/3,D=1/3
所以原式=∫[1/x+(-1/3)/(x+1)+(-2x/3+1/3)/(x²-x+1)]dx
=ln∣x∣+(-1/3)ln∣x+1∣+(-2/3)∫(x-1/2)dx/[(x-1/2)²+3/4]
=ln∣x∣+(-1/3)ln∣x+1∣+(-1/3)∫d(x-1/2)²/[(x-1/2)²+3/4]
=ln∣x∣+(-1/3)ln∣x+1∣+(-1/3)ln[(x-1/2)²+3/4]+C
解得:A=1,B=-1/3,C=-2/3,D=1/3
所以原式=∫[1/x+(-1/3)/(x+1)+(-2x/3+1/3)/(x²-x+1)]dx
=ln∣x∣+(-1/3)ln∣x+1∣+(-2/3)∫(x-1/2)dx/[(x-1/2)²+3/4]
=ln∣x∣+(-1/3)ln∣x+1∣+(-1/3)∫d(x-1/2)²/[(x-1/2)²+3/4]
=ln∣x∣+(-1/3)ln∣x+1∣+(-1/3)ln[(x-1/2)²+3/4]+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询