初二数学,三角形
4个回答
展开全部
①、②当AF=FC、△AEF≌△CDF时,需要∠BAC=∠BCA;
③、④在AC上取AG=AE,连接FG,即可证得△AEG≌△AGF,得∠AFE=∠AFG;再证得∠CFG=∠CFD,则根据全等三角形的判定方法AAS即可证△GFC≌△DFC,可得DC=GC,即可得结论.
解:①假设AF=FC.则∠1=∠4.
∵AD、CE是△ABC的角平分线,
∴∠BAC=2∠1,∠BCA=2∠4,
∴∠BAC=∠BCA.
∴当∠BAC≠∠BCA时,该结论不成立;
故①不一定正确;
③、④在AC上取AG=AE,连接FG,即可证得△AEG≌△AGF,得∠AFE=∠AFG;再证得∠CFG=∠CFD,则根据全等三角形的判定方法AAS即可证△GFC≌△DFC,可得DC=GC,即可得结论.
解:①假设AF=FC.则∠1=∠4.
∵AD、CE是△ABC的角平分线,
∴∠BAC=2∠1,∠BCA=2∠4,
∴∠BAC=∠BCA.
∴当∠BAC≠∠BCA时,该结论不成立;
故①不一定正确;
展开全部
我帮你
更多追问追答
追答
B
①、②当AF=FC、△AEF≌△CDF时,需要∠BAC=∠BCA;
③、④在AC上取AG=AE,连接FG,即可证得△AEG≌△AGF,得∠AFE=∠AFG;再证得∠CFG=∠CFD,则根据全等三角形的判定方法AAS即可证△GFC≌△DFC,可得DC=GC,即可得结论.
解:①假设AF=FC.则∠1=∠4.
∵AD、CE是△ABC的角平分线,
∴∠BAC=2∠1,∠BCA=2∠4,
∴∠BAC=∠BCA.
∴当∠BAC≠∠BCA时,该结论不成立;
故①不一定正确;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询