2个回答
展开全部
第1题
arctanx(1-2x)² ′
= (1-2x)² ′/(1+(1-2x)⁴ )
= -4(1-2x)/(1+(1-2x)⁴ )
=4(2x-1)/(1+(2x-1)⁴ )
第2题
y ′
=(2^x√x²+1) ′sinx + (2^x√x²+1) cosx
=(㏑2‧2^x‧√x²+1 + 2^x‧x/√x²+1) sinx + (2^x√x²+1) cosx
=2^x sinx(㏑2(x²+1) + x)/(√x²+1)
+2^x√x² cosx
+cosx
第3题
f ′(x)=(sinx sin3x)′sin5x+5(sinx sin3x)cos5x
=(cosx sin3x+3sinx cos3x)sin5x+5sinx sin3x cos5x
=cosx sin3x sin5x+3sinx cos3x sin5x+5sinx sin3x cos5x
f''(x)=-sinx sin3x sin5x +cosx (sin3x sin5x) ′+
-9sinx sin3x sin5x + 3cos3x (sinx sin5x) ′+
-25sinx sin3x sin5x + 5(sinx sin3x ) ′cos5x
=-35sinx sin3x sin5x +
cosx (3cos3x sin5x + 5sin3x cos5x) +
3cos3x (cosx sin5x + 5sinx cos5x) +
5cos5x( cosx sin3x + 3sinx cos3x)
f''(0)=0
arctanx(1-2x)² ′
= (1-2x)² ′/(1+(1-2x)⁴ )
= -4(1-2x)/(1+(1-2x)⁴ )
=4(2x-1)/(1+(2x-1)⁴ )
第2题
y ′
=(2^x√x²+1) ′sinx + (2^x√x²+1) cosx
=(㏑2‧2^x‧√x²+1 + 2^x‧x/√x²+1) sinx + (2^x√x²+1) cosx
=2^x sinx(㏑2(x²+1) + x)/(√x²+1)
+2^x√x² cosx
+cosx
第3题
f ′(x)=(sinx sin3x)′sin5x+5(sinx sin3x)cos5x
=(cosx sin3x+3sinx cos3x)sin5x+5sinx sin3x cos5x
=cosx sin3x sin5x+3sinx cos3x sin5x+5sinx sin3x cos5x
f''(x)=-sinx sin3x sin5x +cosx (sin3x sin5x) ′+
-9sinx sin3x sin5x + 3cos3x (sinx sin5x) ′+
-25sinx sin3x sin5x + 5(sinx sin3x ) ′cos5x
=-35sinx sin3x sin5x +
cosx (3cos3x sin5x + 5sin3x cos5x) +
3cos3x (cosx sin5x + 5sinx cos5x) +
5cos5x( cosx sin3x + 3sinx cos3x)
f''(0)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询