已知二次函数fx=ax^2+bx+c的导数为f′(x),对于任意实数x,都有fx>=0,则f1/f′0的最小值

已知二次函数fx=ax^2+bx+c的导数为f′(x),对于任意实数x,都有fx>=0,则f1/f′0的最小值... 已知二次函数fx=ax^2+bx+c的导数为f′(x),对于任意实数x,都有fx>=0,则f1/f′0的最小值 展开
 我来答
mny5577
2010-09-08
知道答主
回答量:20
采纳率:0%
帮助的人:0
展开全部
因为 f(x)>=0在R上成立
所以 a>0,c>0(由f(0)>0知),且b^2-4ac<=0----------------------1式
又因为 f(1)=a+b+c,f'(0)=b
所以 原式=(a+c)/b+1
由1式可知 |b|<=2√ac<=a+c(当且仅当a=c时取等)
所以 原式最小值为2(若b>0)
原式无最小值(若b<0)

不过我觉得好像不太对啊,一般情况下应该会有“b>0”这个条件才正常吧,,,,,,,残念
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式