概率疑惑(⊙o⊙)?

在抛硬币的试验中,至少抛多少次,才能使正面出现的频率落在(0.4,0.6)区间的概率不小于0.9?先谢谢你提供的详细解题过程。我也觉得至少抛250次,可教材上的答案是69... 在抛硬币的试验中,至少抛多少次,才能使正面出现的频率落在(0.4,0.6)区间的概率不小于0.9?
先谢谢你提供的详细解题过程。我也觉得至少抛250次,可教材上的答案是69,没有过程。这道题目出自中心极限定律,可能要求用棣莫弗——拉普拉斯中心极限定律。能告诉我用中心极限的解题过程或否定69这个结果。
展开
 我来答
buzaihuma
2010-09-08 · TA获得超过1169个赞
知道答主
回答量:87
采纳率:0%
帮助的人:166万
展开全部
设抛一次出现正面的次数为X,
E(X) = 0.5
Var(X) = 0.25
抛n次出现正面的概率为Xn,可以看出Xn是n个独立同分布的变量的和:
E(Xn)=nE(X) = 0.5n
Var(Xn)=nVar(X) = 0.25n
按照中心极限定理,当你抛硬币的次数n较大时,正面出现的频率X / n接近于一个正态分布。这个正分布的期望为 E(Xn / n)= 0.5,
方差为 Var(Xn / n) = Var(Xn) / n^2 = 0.25/n
现在就是问n要多大,才能使一个Y ~ N(0.5,0.25/n)的正态随机变量在在(0.4,0.6)区间的概率不小于0.9。
P( 0.4 < Y < 0.6)
= P ( -0.1 / (0.25/n)^0.5 < (Y-0.5)/ (0.25/n)^0.5 < 0.1 / (0.25/n)^0.5)) > 0.9
中间那个就是一个标准正态分布了,查正态分布表,标准正态的上95%分位数是1.65,那么就是 0.1/0.5 * n^0.5 > 1.65 推出 n > 68.0625,最后结果是69.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式