1个回答
展开全部
令x+y=t, y/x=u
则y=xu代入x+y=t,得
x+xu=t
(1) u≠-1,即y≠-x, t≠0时,
x=t/(1+u)
y=xu=ut/(1+u)
∴f(t,u)=f(x+y,y/x)=x^2-y^2=[t/(1+u)]^2-[ut/(1+u)]^2
=t^2(1-u^2)/(1+u)^2=t^2(1-u)/(1+u) (t≠0, u≠-1)
∴f(x,y)=x^2(1-y)/(1+y) (x≠0, y≠-1)
(2) u=-1时,y=-x, t=0,则
f(0,-1)=x^2-y^2=x^2-(-x)^2=0
综上可知
f(x,y)=x^2(1-y)/(1+y) (y≠-1)
=0 (y=-1)
则y=xu代入x+y=t,得
x+xu=t
(1) u≠-1,即y≠-x, t≠0时,
x=t/(1+u)
y=xu=ut/(1+u)
∴f(t,u)=f(x+y,y/x)=x^2-y^2=[t/(1+u)]^2-[ut/(1+u)]^2
=t^2(1-u^2)/(1+u)^2=t^2(1-u)/(1+u) (t≠0, u≠-1)
∴f(x,y)=x^2(1-y)/(1+y) (x≠0, y≠-1)
(2) u=-1时,y=-x, t=0,则
f(0,-1)=x^2-y^2=x^2-(-x)^2=0
综上可知
f(x,y)=x^2(1-y)/(1+y) (y≠-1)
=0 (y=-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询