定积分,求解
4个回答
展开全部
∫(0->+∞) arctanx / (1+x^2)^(3/2)dx
let
x= tana
dx= (seca)^2 da
x=0,a=0
x=+∞,a=π/2
∫(0->+∞) arctanx / (1+x^2)^(3/2)dx
=∫(0->π/2) [a / (seca)^3 ] (seca)^2 da
=∫(0->π/2) acosa da
=∫(0->π/2) adsina
=[asina](0->π/2) - ∫(0->π/2)sina da
= π/2+[cosa](0->π/2)
= π/2-1
let
x= tana
dx= (seca)^2 da
x=0,a=0
x=+∞,a=π/2
∫(0->+∞) arctanx / (1+x^2)^(3/2)dx
=∫(0->π/2) [a / (seca)^3 ] (seca)^2 da
=∫(0->π/2) acosa da
=∫(0->π/2) adsina
=[asina](0->π/2) - ∫(0->π/2)sina da
= π/2+[cosa](0->π/2)
= π/2-1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询