2个回答
展开全部
设AD=DC=2,∠DBC=20°,则BC=BD=1/sin10°,∠BDC=80°,
AD∥BC,
∴∠ADB=∠DBC=20°,
∴AC=4sin50°
∠ACB=∠CAD=40°,
由余弦定理,AB^2=1/(sin10°)^2+16(sin50°)^2-8sin50°cos40°/sin10°
=1/(sin10°)^2+8(1-cos100°)-4(1+sin10°)/sin10°
=4+8sin10°-4/sin10°+1/(sin10°)^2,
由正弦定理,sin∠ABC=ACsin∠ACB/AB=4sin50°sin40°/√[4+8sin10°-4/sin10°+1/(sin10°)^2]=0.5,
∴∠ABC=30°。
=
AD∥BC,
∴∠ADB=∠DBC=20°,
∴AC=4sin50°
∠ACB=∠CAD=40°,
由余弦定理,AB^2=1/(sin10°)^2+16(sin50°)^2-8sin50°cos40°/sin10°
=1/(sin10°)^2+8(1-cos100°)-4(1+sin10°)/sin10°
=4+8sin10°-4/sin10°+1/(sin10°)^2,
由正弦定理,sin∠ABC=ACsin∠ACB/AB=4sin50°sin40°/√[4+8sin10°-4/sin10°+1/(sin10°)^2]=0.5,
∴∠ABC=30°。
=
更多追问追答
追问
我需要的是初中解法
三角函数我也会。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询