已知a、b都是正数,x、y均属于全体实数,且a+b=1,证明:
2个回答
展开全部
要证ax²+by²≥(ax+by)²
即证ax²+by²-(ax+by)²≥0
化简ax²+by²-(a²x²+b²y²+2abxy)≥0
整理得ax²-a²x²+by²-b²y²-2abxy≥0
a(1-a)x²+b(1-b)y²-2abxy≥0
abx²+aby²-2abxy≥0 (a+b=1得a=1-b,b=1-a,代入上式即可)
ab(x²+y²-2xy)≥0
ab(x-y)²≥0
ab为正数,(x-y)²≥0
所以ab(x-y)²≥0
所以ax²+by²≥(ax+by)²
即证ax²+by²-(ax+by)²≥0
化简ax²+by²-(a²x²+b²y²+2abxy)≥0
整理得ax²-a²x²+by²-b²y²-2abxy≥0
a(1-a)x²+b(1-b)y²-2abxy≥0
abx²+aby²-2abxy≥0 (a+b=1得a=1-b,b=1-a,代入上式即可)
ab(x²+y²-2xy)≥0
ab(x-y)²≥0
ab为正数,(x-y)²≥0
所以ab(x-y)²≥0
所以ax²+by²≥(ax+by)²
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询