(1/n+1)+(1/n+2)+...+(1/n+n)的和的极限,怎么用定积分的定义求出?
2个回答
展开全部
回答具体如图:
变换为满足定积分的极限定义式的形式。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料:
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距 是相等的。但是必须指出,即使 不相等,积分值仍然相同。
我们假设这些“矩形面积和” ,那么当n→+∞时, 的最大值趋于0,所以所有的 趋于0,所以S仍然趋于积分值。
利用这个规律,在我们了解牛顿-莱布尼兹公式之前,我们便可以对某些函数进行积分。
解决求曲边图形的面积问题
求变速直线运动的路程,做变速直线运动的物体经过的路程s,等于其速度函数v=v(t) (v(t)≥0)在时间区间[a,b]上的定积分。
变力做功某物体在变力F=F(x)的作用下,在位移区间[a,b]上做的功等于F=F(x)在[a,b]上的定积分。
数列求和的极限:
参考资料:百度百科——定积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询