1的4次方加2的4次方一直加到n的4次方等于多少
2个回答
展开全部
1^4+2^4+3^4+……+n^4=(1/5)n^5+(1/2)n^4+(1/3)n^3-(1/30)n。
1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2。
次方最基本的定义是:设a为某数,n为正整数,a的n次方表示为aⁿ,表示n个a连乘所得之结果,如2⁴=2×2×2×2=16。次方的定义还可以扩展到0次方、负数次方、小数次方、无理数次方甚至是虚数次方。
0与正整数次方相关延伸:
一个数的零次方。
任何非零数的0次方都等于1。原因如下
通常代表3次方。
5的3次方是125,即5×5×5=125。
5的2次方是25,即5×5=25。
5的1次方是5,即5×1=5。
由此可见,n≧0时,将5的(n+1)次方变为5的n次方需除以一个5,所以可定义5的0次方为:
5 ÷ 5 = 1。
0的次方。
0的任何非0次方都是0,例:0⁵=0×0×0×0×0=0;0的0次方无意义
展开全部
1+2+3+...+n = (1/2)n(n+1) = Tn
1^2+2^2+...+n^2= (1/6)n(n+1)(2n+1) = Rn
an
= n^3
=(n-1)n(n+1) +n
= (1/4) [(n-1)n(n+1)(n+2)- (n-2)(n-1)n(n+1) ] + (1/2)[ n(n+1) - (n-1)n ]
Pn
= a1+a2+a3+...+an
=(1/4)(n-1)n(n+1)(n+2)+ (1/2)n(n+1)
=(1/4)n(n+1)[(n-1)(n+2) + 2 ]
=(1/4)[n(n+1)]^2
ie
1^3+2^3+....+n^3 = (1/4)[n(n+1)]^2
bn
=n^4
=(n-1)n(n+1)(n+2) - 2n^3 +n^2 +2n
=(1/5)[(n-1)n(n+1)(n+2)(n+3) -(n-2)(n-1)n(n+1)(n+2)] - 2n^3 +n^2 +2n
Sn
=b1+b2+...+bn
=(1/5)(n-1)n(n+1)(n+2)(n+3) -2Pn +Rn +2Tn
=(1/5)(n-1)n(n+1)(n+2)(n+3) -(1/2)[n(n+1)]^2
+(1/6)n(n+1)(2n+1) + n(n+1)
=(1/30)n(n+1) [ 6(n-1)(n+2)(n+3) - 15n(n+1) + 5(2n+1) + 30]
=(1/30)n(n+1) [ 6(n^3+4n^2+n-6) - 15(n^2+n) + 5(2n+1) + 30]
=(1/30)n(n+1) [ (6n^3+24n^2+6n-36) - (15n^2+15n) + (10n+5) + 30]
=(1/30)n(n+1)(6n^3+9n^2+n-1)
ie
1^4+2^4+...+n^4
=(1/30)n(n+1)(6n^3+9n^2+n-1)
1^2+2^2+...+n^2= (1/6)n(n+1)(2n+1) = Rn
an
= n^3
=(n-1)n(n+1) +n
= (1/4) [(n-1)n(n+1)(n+2)- (n-2)(n-1)n(n+1) ] + (1/2)[ n(n+1) - (n-1)n ]
Pn
= a1+a2+a3+...+an
=(1/4)(n-1)n(n+1)(n+2)+ (1/2)n(n+1)
=(1/4)n(n+1)[(n-1)(n+2) + 2 ]
=(1/4)[n(n+1)]^2
ie
1^3+2^3+....+n^3 = (1/4)[n(n+1)]^2
bn
=n^4
=(n-1)n(n+1)(n+2) - 2n^3 +n^2 +2n
=(1/5)[(n-1)n(n+1)(n+2)(n+3) -(n-2)(n-1)n(n+1)(n+2)] - 2n^3 +n^2 +2n
Sn
=b1+b2+...+bn
=(1/5)(n-1)n(n+1)(n+2)(n+3) -2Pn +Rn +2Tn
=(1/5)(n-1)n(n+1)(n+2)(n+3) -(1/2)[n(n+1)]^2
+(1/6)n(n+1)(2n+1) + n(n+1)
=(1/30)n(n+1) [ 6(n-1)(n+2)(n+3) - 15n(n+1) + 5(2n+1) + 30]
=(1/30)n(n+1) [ 6(n^3+4n^2+n-6) - 15(n^2+n) + 5(2n+1) + 30]
=(1/30)n(n+1) [ (6n^3+24n^2+6n-36) - (15n^2+15n) + (10n+5) + 30]
=(1/30)n(n+1)(6n^3+9n^2+n-1)
ie
1^4+2^4+...+n^4
=(1/30)n(n+1)(6n^3+9n^2+n-1)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询