1个回答
2017-07-14
展开全部
在x=4点按泰勒公式展开,展开到(x-4)^3加个余项就好了
余项=f^(n+1)[x0+θ(x-x0)](x-x0)^(n+1)/(n+1)!
这里f^(n+1)[x0+θ(x-x0)]是f[x0+θ(x-x0)]的n+1阶导数.
其中x0=4,n=3.带入就是余项.
也可以是把f^(n+1)[x0+θ(x-x0)]换成f^(n+1)(ξ)其中ξ是x与x0(也就是x与4之间的数)
余项=f^(n+1)[x0+θ(x-x0)](x-x0)^(n+1)/(n+1)!
这里f^(n+1)[x0+θ(x-x0)]是f[x0+θ(x-x0)]的n+1阶导数.
其中x0=4,n=3.带入就是余项.
也可以是把f^(n+1)[x0+θ(x-x0)]换成f^(n+1)(ξ)其中ξ是x与x0(也就是x与4之间的数)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询