如图 抛物线y=ax2+bx+c与x轴交于A,B(4,0)两点,与y轴交于点C(0,4)

如图抛物线y=ax2+bx+c与x轴交于A,B(4,0)两点,与y轴交于点C(0,4)。(1)求抛物线的表达式;(2)连接AC,BC,求tan∠CAO的值(3)动点E以每... 如图 抛物线y=ax2+bx+c与x轴交于A,B(4,0)两点,与y轴交于点C(0,4)。(1)求抛物线的表达式;(2)连接AC,BC,求tan∠CAO的值(3)动点E以每秒1个单位长度的速度沿A到B方向匀速运动,过点E做EF∥y轴,设点E运动时间为t(0≤t≤6)秒,运动过程中直线EF在△ABC中扫过的面积为S,求S与t的函数关系式;(4)若点M,N在线段BC上,点Q,P在第一象限的抛物线上,且四边形MNQP是正方形,求点M的坐标。 展开
 我来答
170******08
2017-05-25 · TA获得超过114个赞
知道小有建树答主
回答量:544
采纳率:0%
帮助的人:101万
展开全部
解答:
f(x)=x~3+x~2+x+3的导数为g(x)=3x^2+2x+1,
当x=-1时,g(x)=3x^2+2x+1=2,
即切线斜率为2.
当x=-1时,f(x)=x~3+x~2+x+3=2
故抛物线y~2=2px的切线也过点(-1,2),
故抛物线y~2=2px的切线为:y-2=2*(x+1),即y=2x+4,
由切线与抛物线y~2=2px(p>0)相切,
故把2x=y-4代入y~2=2px,得
y^2=2px=p*(y-4),即y^2-py+4p=0
故判别式=p^2-4*4p=0,
得p=16或p=0(不合,舍去)
f(X)=x3+ax2+bx+c求导得f‘(X)=3x2+2ax+b
在x=-2/3与x=1时都取得极值所以
f‘(-2/3)=0 4/3-4/3a+b=0
f‘(1)=0 3+2a+b=0
解得a=-1/2 b=-2
∴f(X)=x3-1/2x2-2x+c
对x∈[-1,2]都有f(x)<c2 恒成立
f‘(X)=3x2-x-2=3(x-1/6)2-25/12
在x=-2/3与x=1时都取得极值
所以x∈[-1,-2/3]单调递增x∈[-2/3,1]单调递减x∈[1,2]单调递增求f(-2/3)f(2)得
∴x∈[-1,2],f(x)max=2+C
x∈[-1,2]都有f(x)<c2 恒成立
∴2+c<c2
∴-1<c<2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式