高中数学。。
∵a(2m-1)+a(2n-1)=2a(m+n-1)+3(m-n)²/4,对于任意正整数成立,
∴当m=n+1时,上式仍成立,即a(2n+1)+a(2n-1)=2a(2n)+3/4,
(a(2n+1)-a(2n))-(a(2n)-a(2n-1))=3/4,
∴数列{a(2n+1)-a(2n)}为公差3/4的等差数列,
a1=0,a2=1/8,a3=1,b1=1,
∴当m=n+2时,a(2n+3)+a(2n-1)=2a(2n+1)+3,
(a(2n+3)-a(2n+1))-(a(2n+1)-a(2n-1))=3,
∴数列{a(2n+1)-a(2n-1)}为公差3的等差数列,即数列{b(n)}为公差3的等差数列,
b(n)=1+3(n-1)=3n-2,
b(n+1)=3n+1,
S(n)=1/(1×4)+1/(4×7)+1/(7×11)+…… +1/((3n-2)×(3n+1))
=(1-1/4)/3+(1/4-1/7)/3+(1/7-1/11)/3+…… +(1/(3n-2)-1/(3n+1))/3
=1/3-1/(9n+3)=n/(3n+1),
S1=1/4,Sp=p/(3p+1),Sq=q/(3q+1),
p²/(3p+1)²=1/4×q/(3q+1),
4(3q+1)p²=q(3p+1)²,
∴4│q,设q=4n,则(12n+1)p²=n(3p+1)²,
∵ (12n+1,n) =1, (3p+1,p)=1,∴n=p²,12n+1=(3p+1)²,
12p²+1=9p²+6p+1,即3p²=6p,p=2,n=4,q=16,
S1=1/4,S2=2/7,S16=16/49,符合题意。