展开全部
下载个作业帮app.希望能帮到你!成功记得采纳哦!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
诱导公式 sin (α+k·360°)=sinα(k∈Z) cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z) 课改后COT SEC CSC不做要求的 sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanα sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα sin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanα sin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα sin (90°-α)=cosα cos (90°-α)=sinα tan (90°-α)=cotα 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式: sin(2α)=2sinα·cosα=2tan(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询