这个极限怎么求 以及这个函数垂直渐近线是什么 10
展开全部
一种是垂直渐近线:这种渐近线的形式为x=a,也就是函数在x=a处的值为无穷大。本题x=-3 另一种是斜渐近线:这种渐近线的形式为y=kx+b,反映函数在无穷远点的性态(k=0时,为水平渐近线y=b)先求k,k=lim(x→∞)f(x)/x 再求b,b=lim(x→∞)f(x)-kx 例如:k=lim(x→∞)f(x)/x=lim(x→∞)[(x-4)2/x(x+3)2]=0 b=lim(x→∞)f(x)-kx=lim(x→∞)[(x-4)2/(x+3)2]=1 ∴渐近线为x=-3和y=1
展开全部
题目表示有误, 等号不应有!
x→∞ 是求的水平渐近线, 水平渐近线为
y = lim<x→∞>e^(1/x^2)arctan[(x^2+x+1)/(x^2-x-2)]
= lim<x→∞>e^(1/x^2)arctan[(1+1/x+1/x^2)/(1-1/x-2/x^2)]
= e^0 arctan1 = π/4.
垂直渐近线是 x = 0
因 lim<x→0>e^(1/x^2)arctan[(x^2+x+1)/(x^2-x-2)] = -∞。
因 lim<x→-1>arctan[(x^2+x+1)/(x+1)(x-2)] 是 π/2 或 -π/2,
x = -1 不是垂直渐近线。
同理, x = 2 不是垂直渐近线。
x→∞ 是求的水平渐近线, 水平渐近线为
y = lim<x→∞>e^(1/x^2)arctan[(x^2+x+1)/(x^2-x-2)]
= lim<x→∞>e^(1/x^2)arctan[(1+1/x+1/x^2)/(1-1/x-2/x^2)]
= e^0 arctan1 = π/4.
垂直渐近线是 x = 0
因 lim<x→0>e^(1/x^2)arctan[(x^2+x+1)/(x^2-x-2)] = -∞。
因 lim<x→-1>arctan[(x^2+x+1)/(x+1)(x-2)] 是 π/2 或 -π/2,
x = -1 不是垂直渐近线。
同理, x = 2 不是垂直渐近线。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询