大数据挖掘需要学习哪些技术大数据的工作

 我来答
尚学堂java学院
2020-12-04 · 百度认证:北京尚学堂科技有限公司官方账号
尚学堂java学院
向TA提问
展开全部

处理大数据需要一个综合、复杂、多方位的系统,系统中的处理模块有很多,而数据挖掘技术以一个独立的身份存在于处理大数据的整个系统之中,与其他模块之间相辅相成、协调发展。在大数据时代中,数据挖掘技术的地位是无可比拟的。

数据挖掘的基本流程

在正式讲数据挖掘知识清单之前,我先和你聊聊数据挖掘的基本流程。

数据挖掘的过程可以分成以下 6 个步骤。

  1. 商业理解:数据挖掘不是我们的目的,我们的目的是更好地帮助业务,所以第一步我们要从商业的角度理解项目需求,在这个基础上,再对数据挖掘的目标进行定义。

  2. 数据理解:尝试收集部分数据,然后对数据进行探索,包括数据描述、数据质量验证等。这有助于你对收集的数据有个初步的认知。

  3. 数据准备:开始收集数据,并对数据进行清洗、数据集成等操作,完成数据挖掘前的准备工作。

  4. 模型建立:选择和应用各种数据挖掘模型,并进行优化,以便得到更好的分类结果。

  5. 模型评估:对模型进行评价,并检查构建模型的每个步骤,确认模型是否实现了预定的商业目标。

  6. 上线发布:模型的作用是从数据中找到金矿,也就是我们所说的“知识”,获得的知识需要转化成用户可以使用的方式,呈现的形式可以是一份报告,也可以是实现一个比较复杂的、可重复的数据挖掘过程。数据挖掘结果如果是日常运营的一部分,那么后续的监控和维护就会变得重要。

数据挖掘的十大算法

为了进行数据挖掘任务,数据科学家们提出了各种模型,在众多的数据挖掘模型中,国际权威的学术组织 ICDM (the IEEE International Conference on Data Mining)评选出了十大经典的算法。

按照不同的目的,我可以将这些算法分成四类,以便你更好的理解。

  • 分类算法:C4.5,朴素贝叶斯(Naive Bayes),SVM,KNN,Adaboost,CART

  • 聚类算法:K-Means,EM

  • 关联分析:Apriori

  • 连接分析:PageRank

1. C4.5

C4.5 算法是得票最高的算法,可以说是十大算法之首。C4.5 是决策树的算法,它创造性地在决策树构造过程中就进行了剪枝,并且可以处理连续的属性,也能对不完整的数据进行处理。它可以说是决策树分类中,具有里程碑式意义的算法。

2. 朴素贝叶斯(Naive Bayes)

朴素贝叶斯模型是基于概率论的原理,它的思想是这样的:对于给出的未知物体想要进行分类,就需要求解在这个未知物体出现的条件下各个类别出现的概率,哪个最大,就认为这个未知物体属于哪个分类。

3. SVM

SVM 的中文叫支持向量机,英文是 Support Vector Machine,简称 SVM。SVM 在训练中建立了一个超平面的分类模型。如果你对超平面不理解,没有关系,我在后面的算法篇会给你进行介绍。

4. KNN

KNN 也叫 K 最近邻算法,英文是 K-Nearest Neighbor。所谓 K 近邻,就是每个样本都可以用它最接近的 K 个邻居来代表。如果一个样本,它的 K 个最接近的邻居都属于分类 A,那么这个样本也属于分类 A。

5. AdaBoost

Adaboost 在训练中建立了一个联合的分类模型。boost 在英文中代表提升的意思,所以 Adaboost 是个构建分类器的提升算法。它可以让我们多个弱的分类器组成一个强的分类器,所以 Adaboost 也是一个常用的分类算法。

6. CART

CART 代表分类和回归树,英文是 Classification and Regression Trees。像英文一样,它构建了两棵树:一棵是分类树,另一个是回归树。和 C4.5 一样,它是一个决策树学习方法。

7. Apriori

Apriori 是一种挖掘关联规则(association rules)的算法,它通过挖掘频繁项集(frequent item sets)来揭示物品之间的关联关系,被广泛应用到商业挖掘和网络安全等领域中。频繁项集是指经常出现在一起的物品的集合,关联规则暗示着两种物品之间可能存在很强的关系。

8. K-Means

K-Means 算法是一个聚类算法。你可以这么理解,最终我想把物体划分成 K 类。假设每个类别里面,都有个“中心点”,即意见领袖,它是这个类别的核心。现在我有一个新点要归类,这时候就只要计算这个新点与 K 个中心点的距离,距离哪个中心点近,就变成了哪个类别。

9. EM

EM 算法也叫最大期望算法,是求参数的最大似然估计的一种方法。原理是这样的:假设我们想要评估参数 A 和参数 B,在开始状态下二者都是未知的,并且知道了 A 的信息就可以得到 B 的信息,反过来知道了 B 也就得到了 A。可以考虑首先赋予 A 某个初值,以此得到 B 的估值,然后从 B 的估值出发,重新估计 A 的取值,这个过程一直持续到收敛为止。

EM 算法经常用于聚类和机器学习领域中。

10. PageRank

PageRank 起源于论文影响力的计算方式,如果一篇文论被引入的次数越多,就代表这篇论文的影响力越强。同样 PageRank 被 Google 创造性地应用到了网页权重的计算中:当一个页面链出的页面越多,说明这个页面的“参考文献”越多,当这个页面被链入的频率越高,说明这个页面被引用的次数越高。基于这个原理,我们可以得到网站的权重划分。

最后

算法可以说是数据挖掘的灵魂,也是最精华的部分。这 10 个经典算法在整个数据挖掘领域中的得票最高的,后面的一些其他算法也基本上都是在这个基础上进行改进和创新。今天你先对十大算法有一个初步的了解,你只需要做到心中有数就可以了。

CDA数据分析师
2021-10-27 · 百度认证:北京国富如荷网络科技有限公司
CDA数据分析师
向TA提问
展开全部
数据挖掘需要学习的内容有:
1、编程语言。
2、大数据处理框架。
3、数据库知识。
4、数据结构与算法。
5、机器学习/深度学习。
6、统计学知识。
以上就是数据挖掘需要学习的内容。数据挖掘技术渗透在大数据时代的方方面面,数据挖掘是一个交叉学科,不仅设计编程和计算机学科,还涉及生活中的多个领域,在我们的生活和工作中无处不在。

如果你对大数据工程有浓厚的兴趣,推荐CDA数据分析师课程。课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
育知同创教育
2018-01-04 · 百度知道合伙人官方认证企业
育知同创教育
1【专注:Python+人工智能|Java大数据|HTML5培训】 2【免费提供名师直播课堂、公开课及视频教程】 3【地址:北京市昌平区三旗百汇物美大卖场2层,微信公众号:yuzhitc】
向TA提问
展开全部

首先
我由各种编程语言的背景——matlab,R,java,C/C++,python,网络编程等
我又一定的数学基础——高数,线代,概率论,统计学等
我又一定的算法基础——经典算法,神经网络,部分预测算法,群智能算法等
但这些目前来讲都不那么重要,但慢慢要用到

Step 1:大数据理论,方法和技术

  • 大数据理论——啥都不说,人家问你什么是大数据时,你能够讲到别人知道什么是大数据

  • 大数据方法——然后别人问你,那怎么实现呢?嗯,继续讲:说的是方法(就好像归并排序算法:分,并)。到目前外行人理解无障碍

  • 大数据技术——多嘴的人继续问:用的技术。

  • 这阶段只是基础,不涉及任何技术细节,慢慢看慢慢总结,积累对“大数据”这个词的理解。

    Step 2:大数据思维
    Bang~这是继Step 1量变发展而来的质变:学了那么久“大数据”,把你扔到制造业,你怎么办?
    我想,这就是“学泛”的作用吧,并不是学到什么具体东西,而是学到了对待事物的思维。

    ----------------------------------------------------------------------
    以下阶段我还没开始=_=,不好误导大家
    Step 3:大数据技术基础

    Step 4:大数据技术进阶

    Step 5:打实战

    Step 6:大融合

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式