高数简单证明题求解
求证:arcsin0+arccos0=pi/2证:设f(x)=arcsinx+arccosx求导:f'(x)=1/根号(1-x^2)-1/根号(1-x^2)=0因为导函数...
求证:arcsin0+arccos0=pi/2
证:设f(x)=arcsinx+arccosx
求导:f'(x)=1/根号(1-x^2)-1/根号(1-x^2)=0
因为导函数等于0 所以f(x)是常系数函数 即f(x)=a
x=0时 f(0)=arcsin0+arccos0=pi/2
所以恒等式成立
上面的
因为导函数等于0 所以f(x)是常系数函数 即f(x)=a
x=0时 f(0)=arcsin0+arccos0=pi/2
所以恒等式成立
为什么取0时候等式为pi/2就是恒等于pi/2了呢?? 展开
证:设f(x)=arcsinx+arccosx
求导:f'(x)=1/根号(1-x^2)-1/根号(1-x^2)=0
因为导函数等于0 所以f(x)是常系数函数 即f(x)=a
x=0时 f(0)=arcsin0+arccos0=pi/2
所以恒等式成立
上面的
因为导函数等于0 所以f(x)是常系数函数 即f(x)=a
x=0时 f(0)=arcsin0+arccos0=pi/2
所以恒等式成立
为什么取0时候等式为pi/2就是恒等于pi/2了呢?? 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询