这道高数题,怎么做?
1个回答
展开全部
三条直线交于一点的充要条件是由三个直线方程组成的方程组有唯一解
即
ax+2by=-3c
bx+2cy=-3a
cx+2ay=-3b
有唯一解
则其充要条件为
r(A)=r(A,b)=n=2
故增广矩阵的行列式|A,b|=0, 即
|a 2b -3c|
|b 2c -3a| = 0
|c 2a -3b|
=> 6(a+b+c)(a²+b²+c²-ab-ac-bc)=0
=> 3(a+b+c)[(a-b)²+(a-c)²+(b-c)²]=0
∵三条直线不共线
∴(a-b)²+(a-c)²+(b-c)²≠0
∴a+b+c=0
即
ax+2by=-3c
bx+2cy=-3a
cx+2ay=-3b
有唯一解
则其充要条件为
r(A)=r(A,b)=n=2
故增广矩阵的行列式|A,b|=0, 即
|a 2b -3c|
|b 2c -3a| = 0
|c 2a -3b|
=> 6(a+b+c)(a²+b²+c²-ab-ac-bc)=0
=> 3(a+b+c)[(a-b)²+(a-c)²+(b-c)²]=0
∵三条直线不共线
∴(a-b)²+(a-c)²+(b-c)²≠0
∴a+b+c=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |