不定积分计算题?

 我来答
若以下回答无法解决问题,邀请你更新回答
夔自浪7111
2019-12-26 · TA获得超过6179个赞
知道大有可为答主
回答量:1万
采纳率:62%
帮助的人:673万
展开全部
(1)
∫x^2/(x^2+1)^2 dx
=∫ dx/(x^2+1) - ∫ dx/(x^2+1)^2
=arctanx - ∫dx/(x^2+1)^2
let
x= tany
dx= (secy)^2 dy
∫dx/(x^2+1)^2
=∫dy/(secy)^2
=∫(cosy)^2 dy
=(1/2)∫(1+cos2y) dy
=(1/2)[y + (1/2)sin2y] + C'
=(1/2)[arctanx + x/(1+x^2)] + C'
∫x^2/(x^2+1)^2 dx
=arctanx - ∫dx/(x^2+1)^2
=arctanx - (1/2)[arctanx + x/(1+x^2)] + C
=(1/2)[arctanx - x/(1+x^2)] + C
(2)
t^5 +1
= t^4(t+1) - t^4 +1
=t^4(t+1) - t^3(t+1) + t^3 +1
=t^4(t+1) - t^3(t+1) + t^2(t+1) -t^2 +1
=t^4(t+1) - t^3(t+1) + t^2(t+1) -t(t+1)+ t+1
=t^4(t+1) - t^3(t+1) + t^2(t+1) -t(t+1)+ (t+1)
ie
t^5 +1 = (t+1)(t^4-t^3+t^2-t+1)
(t^5+1)/(t+1) =t^4-t^3+t^2-t+1
∫ (t^5+1)/(t+1) dt
=∫( t^4-t^3+t^2-t+1) dt
=(1/5)t^5-(1/4)t^4+(1/3)t^3-(1/2)t^2 +t + C
追问
你可以安息了
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式